Seasonal Prediction from Arctic Sea Surface Temperatures: Opportunities and Pitfalls

Erik W. Kolstad Uni Research Climate, Bjerknes Center for Climate Research, Bergen, Norway

Search for other papers by Erik W. Kolstad in
Current site
Google Scholar
PubMed
Close
and
Marius Årthun Geophysical Institute, University of Bergen, and Bjerknes Center for Climate Research, Bergen, Norway

Search for other papers by Marius Årthun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Arctic sea ice extent and sea surface temperature (SST) anomalies have been shown to be skillful predictors of weather anomalies in the midlatitudes on the seasonal time scale. In particular, below-normal sea ice extent in the Barents Sea in fall has sometimes preceded cold winters in parts of Eurasia. Here we explore the potential for predicting seasonal surface air temperature (SAT) anomalies in Europe from seasonal SST anomalies in the Nordic seas throughout the year. First, we show that fall SST anomalies not just in the Barents Sea but also in the Norwegian Sea have the potential to predict wintertime SAT anomalies in Europe. Norwegian Sea SST anomalies in spring are also significant predictors of European SAT anomalies in summer. Second, we demonstrate that the potential for prediction is sensitive to trends in the data. In particular, the lagged correlation between Norwegian Sea SST anomalies in spring and European SAT anomalies in summer is considerably higher for raw data than linearly detrended data, largely due to warming SST and SAT trends in recent decades. Third, we show that the potential for prediction has not been stationary in time. One key result is that, according to two twentieth-century reanalyses, the strength of the negative lagged correlation between Barents Sea SST anomalies in fall and European SAT anomalies in winter after 1979 is unprecedented since 1900.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Erik Kolstad, erik.kolstad@uib.no

Abstract

Arctic sea ice extent and sea surface temperature (SST) anomalies have been shown to be skillful predictors of weather anomalies in the midlatitudes on the seasonal time scale. In particular, below-normal sea ice extent in the Barents Sea in fall has sometimes preceded cold winters in parts of Eurasia. Here we explore the potential for predicting seasonal surface air temperature (SAT) anomalies in Europe from seasonal SST anomalies in the Nordic seas throughout the year. First, we show that fall SST anomalies not just in the Barents Sea but also in the Norwegian Sea have the potential to predict wintertime SAT anomalies in Europe. Norwegian Sea SST anomalies in spring are also significant predictors of European SAT anomalies in summer. Second, we demonstrate that the potential for prediction is sensitive to trends in the data. In particular, the lagged correlation between Norwegian Sea SST anomalies in spring and European SAT anomalies in summer is considerably higher for raw data than linearly detrended data, largely due to warming SST and SAT trends in recent decades. Third, we show that the potential for prediction has not been stationary in time. One key result is that, according to two twentieth-century reanalyses, the strength of the negative lagged correlation between Barents Sea SST anomalies in fall and European SAT anomalies in winter after 1979 is unprecedented since 1900.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Erik Kolstad, erik.kolstad@uib.no
Save
  • Athanasiadis, P. J., and Coauthors, 2017: A multisystem view of wintertime NAO seasonal predictions. J. Climate, 30, 14611475, https://doi.org/10.1175/JCLI-D-16-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruno Soares, M., and S. Dessai, 2015: Exploring the use of seasonal climate forecasts in Europe through expert elicitation. Climate Risk Manage., 10, 816, https://doi.org/10.1016/j.crm.2015.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., and Coauthors, 2018: The EU-FP7 ERA-CLIM2 project contribution to advancing science and production of Earth system climate reanalyses. Bull. Amer. Meteor. Soc., 99, 10031014, https://doi.org/10.1175/BAMS-D-17-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R. T., P. E. Bett, H. E. Thornton, and A. A. Scaife, 2017: Skilful seasonal predictions for the European energy industry. Environ. Res. Lett., 12, 024002, https://doi.org/10.1088/1748-9326/aa57ab.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic sea ice cover: Results from different techniques. J. Geophys. Res. Oceans, 122, 68836900, https://doi.org/10.1002/2017JC012768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., E. Hawkins, and S. Tietsche, 2014: Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys. Res. Lett., 41, 75667575, https://doi.org/10.1002/2014GL061694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Felice, M., A. Alessandri, and F. Catalano, 2015: Seasonal climate forecasts for medium-term electricity demand forecasting. Appl. Energy, 137, 435444, https://doi.org/10.1016/j.apenergy.2014.10.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767, https://doi.org/10.1175/JCLI4278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunstone, N., D. Smith, A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci., 9, 809814, https://doi.org/10.1038/ngeo2824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feser, F., M. Barcikowska, O. Krueger, F. Schenk, R. Weisse, and L. Xia, 2015: Storminess over the North Atlantic and northwestern Europe––A review. Quart. J. Roy. Meteor. Soc., 141, 350382, https://doi.org/10.1002/qj.2364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., A. A. Scaife, J. Lindesay, and D. B. Stephenson, 2012: How potentially predictable is northern European winter climate a season ahead? Int. J. Climatol., 32, 801818, https://doi.org/10.1002/joc.2314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, M. S., and D. P. MacKinnon, 2007: Required sample size to detect the mediated effect. Psychol. Sci., 18, 233239, https://doi.org/10.1111/j.1467-9280.2007.01882.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, R. J., A. A. Scaife, E. Hanna, J. M. Jones, and R. Erdélyi, 2017: Simple statistical probabilistic forecasts of the winter NAO. Wea. Forecasting, 32, 15851601, https://doi.org/10.1175/WAF-D-16-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. F., and W. T. Johnson, 1978: The sensitivity of the general circulation to Arctic sea ice boundaries: A numerical experiment. Mon. Wea. Rev., 106, 16491664, https://doi.org/10.1175/1520-0493(1978)106<1649:TSOTGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Crossref
    • Export Citation
  • Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64A, 11595, https://doi.org/10.3402/tellusa.v64i0.11595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, G. S., P. A. Stott, and N. Christidis, 2013: Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J. Geophys. Res., 118, 40014024, https://doi.org/10.1002/jgrd.50239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. P., M. Hell, and N. Keenlyside, 2016: Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Climate Dyn., 46, 11851195, https://doi.org/10.1007/s00382-015-2639-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnard, C., C. M. Zdanowicz, D. A. Fisher, E. Isaksson, A. de Vernal, and L. G. Thompson, 2011: Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature, 479, 509512, https://doi.org/10.1038/nature10581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenigk, T., M. Caian, G. Nikulin, and S. Schimanke, 2016: Regional Arctic sea ice variations as predictor for winter climate conditions. Climate Dyn., 46, 317337, https://doi.org/10.1007/s00382-015-2586-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2017: Causal pathways for temperature predictability from snow depth. J. Climate, 30, 96519663, https://doi.org/10.1175/JCLI-D-17-0280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., and Coauthors, 2018: CERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195. https://doi.org/10.1029/2018MS001273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2015: Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, https://doi.org/10.1002/qj.2396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., C. Appenzeller, and C. Schär, 2005: Probabilistic seasonal prediction of the winter North Atlantic Oscillation and its impact on near surface temperature. Climate Dyn., 24, 213226, https://doi.org/10.1007/s00382-004-0492-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res. Atmos., 120, 32093227, https://doi.org/10.1002/2014JD022848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogawa, F., and Coauthors, 2018: Evaluating impacts of recent Arctic sea-ice loss on the Northern Hemisphere winter climate change. Geophys. Res. Lett., 45, 32553263, https://doi.org/10.1002/2017GL076502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., and M. Årthun, 2017: Toward an ice-free Barents Sea. Geophys. Res. Lett., 44, 83878395, https://doi.org/10.1002/2017GL074304.

  • O’Reilly, C. H., J. Heatley, D. MacLeod, A. Weisheimer, T. N. Palmer, N. Schaller, and T. Woollings, 2017: Variability in seasonal forecast skill of Northern Hemisphere winters over the twentieth century. Geophys. Res. Lett., 44, 57295738, https://doi.org/10.1002/2017GL073736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orvik, K. A., and Ø. Skagseth, 2005: Heat flux variations in the eastern Norwegian Atlantic Current toward the Arctic from moored instruments, 1995–2005. Geophys. Res. Lett., 32, L14610, https://doi.org/10.1029/2005GL023487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2002: The economic value of ensemble forecasts as a tool for risk assessment: From days to decades. Quart. J. Roy. Meteor. Soc., 128, 747774, https://doi.org/10.1256/0035900021643593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D., and B. Horton, 2005: Uncertainties in central England temperature 1878–2003 and some improvements to the maximum and minimum series. Int. J. Climatol., 25, 11731188, https://doi.org/10.1002/joc.1190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D., T. P. Legg, and C. K. Folland, 1992: A new daily central England temperature series, 1772–1991. Int. J. Climatol., 12, 317342, https://doi.org/10.1002/joc.3370120402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, https://doi.org/10.1175/JCLI-D-13-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, https://doi.org/10.1002/2014GL059637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 111, https://doi.org/10.1002/qj.2910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2017a: The missing northern European winter cooling response to Arctic sea ice loss. Nat. Commun., 8, 14603, https://doi.org/10.1038/ncomms14603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2017b: Simulated atmospheric response to regional and pan-Arctic sea ice loss. J. Climate, 30, 39453962, https://doi.org/10.1175/JCLI-D-16-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, W., N. Schaller, D. MacLeod, T. Palmer, and A. Weisheimer, 2015: Impact of hindcast length on estimates of seasonal climate predictability. Geophys. Res. Lett., 42, 15541559, https://doi.org/10.1002/2014GL062829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slonosky, V. C., P. D. Jones, and T. D. Davies, 2001: Atmospheric circulation and surface temperature in Europe from the 18th century to 1995. Int. J. Climatol., 21, 6375, https://doi.org/10.1002/joc.591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., A. A. Scaife, R. Eade, and J. R. Knight, 2016: Seasonal to decadal prediction of the winter North Atlantic Oscillation: Emerging capability and future prospects. Quart. J. Roy. Meteor. Soc., 142, 611617, https://doi.org/10.1002/qj.2479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spielhagen, R. F., and Coauthors, 2011: Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science, 331, 450453, https://doi.org/10.1126/science.1197397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 78247845, https://doi.org/10.1175/JCLI-D-15-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troccoli, A., 2010: Seasonal climate forecasting. Meteor. Appl., 17, 251268, https://doi.org/10.1002/met.184.

  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1924: Correlation in seasonal variations of weather, IX: A further study of world weather. Mem. India Meteor. Dept., 24, 275332.

    • Search Google Scholar
    • Export Citation
  • Wang, L., M. Ting, and P. J. Kushner, 2017: A robust empirical seasonal prediction of winter NAO and surface climate. Sci. Rep., 7, 279, https://doi.org/10.1038/s41598-017-00353-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., N. Schaller, C. O’Reilly, D. A. MacLeod, and T. Palmer, 2017: Atmospheric seasonal forecasts of the twentieth century: Multi-decadal variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution. Quart. J. Roy. Meteor. Soc., 143, 917926, https://doi.org/10.1002/qj.2976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., Y. Wu, and K. L. Smith, 2018: Prolonged effect of the stratospheric pathway in linking Barents–Kara Sea sea ice variability to the midlatitude circulation in a simplified model. Climate Dyn., 50, 527539, https://doi.org/10.1007/s00382-017-3624-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 712 184 6
PDF Downloads 406 53 2