Intercomparison of Precipitation Estimates over the Arctic Ocean and Its Peripheral Seas from Reanalyses

Linette N. Boisvert Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Linette N. Boisvert in
Current site
Google Scholar
PubMed
Close
,
Melinda A. Webster Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Melinda A. Webster in
Current site
Google Scholar
PubMed
Close
,
Alek A. Petty Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Alek A. Petty in
Current site
Google Scholar
PubMed
Close
,
Thorsten Markus Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Thorsten Markus in
Current site
Google Scholar
PubMed
Close
,
David H. Bromwich Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio

Search for other papers by David H. Bromwich in
Current site
Google Scholar
PubMed
Close
, and
Richard I. Cullather Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, and Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Richard I. Cullather in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation over the Arctic Ocean has a significant impact on the basin-scale freshwater and energy budgets but is one of the most poorly constrained variables in atmospheric reanalyses. Precipitation controls the snow cover on sea ice, which impedes the exchange of energy between the ocean and atmosphere, inhibiting sea ice growth. Thus, accurate precipitation amounts are needed to inform sea ice modeling, especially for the production of thickness estimates from satellite altimetry freeboard data. However, obtaining a quantitative estimate of the precipitation distribution in the Arctic is notoriously difficult because of a number of factors, including a lack of reliable, long-term in situ observations; difficulties in remote sensing over sea ice; and model biases in temperature and moisture fields and associated uncertainty of modeled cloud microphysical processes in the polar regions. Here, we compare precipitation estimates over the Arctic Ocean from eight widely used atmospheric reanalyses over the period 2000–16 (nominally the “new Arctic”). We find that the magnitude, frequency, and phase of precipitation vary drastically, although interannual variability is similar. Reanalysis-derived precipitation does not increase with time as expected; however, an increasing trend of higher fractions of liquid precipitation (rainfall) is found. When compared with drifting ice mass balance buoys, three reanalyses (ERA-Interim, MERRA, and NCEP R2) produce realistic magnitudes and temporal agreement with observed precipitation events, while two products [MERRA, version 2 (MERRA-2), and CFSR] show large, implausible magnitudes in precipitation events. All the reanalyses tend to produce overly frequent Arctic precipitation. Future work needs to be undertaken to determine the specific factors in reanalyses that contribute to these discrepancies in the new Arctic.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0125.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Linette Boisvert-McPartland, linette.n.boisvert@nasa.gov

Abstract

Precipitation over the Arctic Ocean has a significant impact on the basin-scale freshwater and energy budgets but is one of the most poorly constrained variables in atmospheric reanalyses. Precipitation controls the snow cover on sea ice, which impedes the exchange of energy between the ocean and atmosphere, inhibiting sea ice growth. Thus, accurate precipitation amounts are needed to inform sea ice modeling, especially for the production of thickness estimates from satellite altimetry freeboard data. However, obtaining a quantitative estimate of the precipitation distribution in the Arctic is notoriously difficult because of a number of factors, including a lack of reliable, long-term in situ observations; difficulties in remote sensing over sea ice; and model biases in temperature and moisture fields and associated uncertainty of modeled cloud microphysical processes in the polar regions. Here, we compare precipitation estimates over the Arctic Ocean from eight widely used atmospheric reanalyses over the period 2000–16 (nominally the “new Arctic”). We find that the magnitude, frequency, and phase of precipitation vary drastically, although interannual variability is similar. Reanalysis-derived precipitation does not increase with time as expected; however, an increasing trend of higher fractions of liquid precipitation (rainfall) is found. When compared with drifting ice mass balance buoys, three reanalyses (ERA-Interim, MERRA, and NCEP R2) produce realistic magnitudes and temporal agreement with observed precipitation events, while two products [MERRA, version 2 (MERRA-2), and CFSR] show large, implausible magnitudes in precipitation events. All the reanalyses tend to produce overly frequent Arctic precipitation. Future work needs to be undertaken to determine the specific factors in reanalyses that contribute to these discrepancies in the new Arctic.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0125.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Linette Boisvert-McPartland, linette.n.boisvert@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 714.53 KB)
Save
  • Adam, J. C., and D. P. Lettenmaier, 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, https://doi.org/10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in the AGCM. J. Atmos. Sci., 63, 33833403, https://doi.org/10.1175/JAS3791.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and F. M. Selten, 2014: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509, 479482, https://doi.org/10.1038/nature13259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and O. Andry, 2017: Towards a rain-dominated Arctic. Nat. Climate Change, 7, 263267, https://doi.org/10.1038/nclimate3240.

  • Blanchard-Wrigglesworth, E., M. A. Webster, S. L. Farrell, and C. M. Bitz, 2018: Reconstruction of snow on Arctic sea ice. J. Geophys. Res. Oceans, 123, 35883602, https://doi.org/10.1002/2017JC013364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., and J. C. Stroeve, 2015: The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder. Geophys. Res. Lett., 42, 44394446, https://doi.org/10.1002/2015GL063775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., D. L. Wu, and C.-L. Shie, 2015: Increasing evaporation amounts seen in the Arctic between 2003 and 2013 from AIRS data. J. Geophys. Res. Atmos., 120, 68656881, https://doi.org/10.1002/2015JD023258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, https://doi.org/10.1175/2011JCLI4175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. B. Wilson, L.-S. Bai, G. W. K. Moore, and P. Bauer, 2016: A comparison of the regional Arctic System Reanalysis and the global ERA-Interim reanalysis for the Arctic. Quart. J. Roy. Meteor. Soc., 142, 644658, https://doi.org/10.1002/qj.2527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., R. E. Dickinson, X. Zeng, and A. N. Hahmann, 1996: Comparison of precipitation observed over the continental United States to that simulated by a climate model. J. Climate, 9, 22332249, https://doi.org/10.1175/1520-0442(1996)009<2233:COPOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colony, R., V. Radionov, and F. J. Tanis, 1998: Measurements of precipitation and snow pack at Russian North Pole drifting stations. Polar Rec., 34, 314, https://doi.org/10.1017/S0032247400014923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., and M. G. Bosilovich, 2011: The moisture budget of the polar atmosphere in MERRA. J. Climate, 24, 28612879, https://doi.org/10.1175/2010JCLI4090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., D. H. Bromwich, and M. C. Serreze, 2000: The atmospheric hydrologic cycle over the Arctic Basin from reanalyses. Part I: Comparisons with observations and previous studies. J. Climate, 13, 923937, https://doi.org/10.1175/1520-0442(2000)013<0923:TAHCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., T. M. Hamill, D. Bromwich, X. Wu, and P. Taylor, 2016: Systematic Improvements of Reanalyses in the Arctic (SIRTA): A white paper (draft). Interagency Arctic Research Policy Committee Rep., 46 pp.

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the community climate system model. J. Climate, 17, 930951, https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated precipitation diurnal cycles over the contiguous United States. J. Geophys. Res., 104, 63776402, https://doi.org/10.1029/98JD02720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giles, K. A., S. W. Laxon, and A. L. Ridout, 2008: Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophys. Res. Lett., 35, L22502, https://doi.org/10.1029/2008GL035710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., E. Elomaa, V. Golubev, T. Gunther, and B. Sevruk, 1994: WMO solid precipitation measurement intercomparison: Preliminary results. WMO/TD-588, 82 pp.

  • Goodison, B. E., P. Y. T. Louie, and D. Yang, 1998: WMO solid precipitation intercomparison: Final report. WMO/TD-872, 212 pp.

  • Grumbine, R. W., 1996: Automated passive microwave sea ice concentration analysis at NCEP OMB. NOAA Tech. Note 120, 13 pp.

  • Han, M., S. A. Braun, T. Matsui, and C. R. Williams, 2013: Evaluation of cloud microphysics schemes in simulations of a winter storm using radar and radiometer measurements. J. Geophys. Res. Atmos., 118, 14011419, https://doi.org/10.1002/jgrd.50115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., and J. Zhang, 1995: On the effect of sea-ice dynamics on oceanic thermohaline circulation. Ann. Glaciol., 21, 361368, https://doi.org/10.1017/S0260305500016074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakobson, E., T. Vihma, T. Palo, L. Jakobson, H. Keernik, and J. Jaagus, 2012: Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys. Res. Lett., 39, L10802, https://doi.org/10.1029/2012GL051591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattsov, V. M., J. E. Walsh, W. L. Chapman, V. A. Govorkova, T. V. Pavlova, and X. Zhang, 2007: Simulation and projection of Arctic freshwater budget components by the IPCC AR4 global climate models. J. Hydrometeor., 8, 571589, https://doi.org/10.1175/JHM575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurtz, N. T., and S. L. Farrell, 2011: Large‐scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophys. Res. Lett., 38, L20505, https://doi.org/10.1029/2011GL049216.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and G. F. Cunningham, 2008: ICESat over Arctic sea ice: Estimation of snow depth and ice thickness. J. Geophys. Res., 113, C08010, https://doi.org/10.1029/2008JC004753.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res., 114, C07005, https://doi.org/10.1029/2009JC005312.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269283, https://doi.org/10.5194/tc-9-269-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lique, C., M. M. Holland, Y. B. Dibike, D. M. Lawrence, and J. A. Screen, 2016: Modeling the Arctic freshwater system and its integration in the global system: Lessons learned and future challenges. J. Geophys. Res. Biogeosci., 121, 540566, https://doi.org/10.1002/2015JG003120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maksym, T., and T. Markus, 2008: Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. J. Geophys. Res., 113, C02S12, https://doi.org/10.1029/2006JC004085.

    • Search Google Scholar
    • Export Citation
  • Markus, T., and Coauthors, 2017: The Ice, Cloud and Land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ., 190, 260273, https://doi.org/10.1016/j.rse.2016.12.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J., and J. Stroeve, 1990: DMSP SSM/I brightness temperature grids for the polar regions on CD-ROM: User’s guide. NSIDC, CD-ROM.

  • Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent, thermodynamic model of sea ice. J. Geophys. Res., 76, 15501575, https://doi.org/10.1029/JC076i006p01550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., 2012: Constraints on the profiles of total water PDF in AGCMs from AIRS and a high-resolution model. J. Climate, 25, 83418352, https://doi.org/10.1175/JCLI-D-11-00412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., H.-L. Pan, and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Tech. Procedures Bull. 484, 14 pp.

  • Morrison, H., and J. O. Pinto, 2006: Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds. Mon. Wea. Rev., 134, 18801900, https://doi.org/10.1175/MWR3154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., and M. Hulme, 1998: Evaluation of the European daily precipitation characteristics from the atmospheric model intercomparison project. Int. J. Climatol., 18, 505522, https://doi.org/10.1002/(SICI)1097-0088(199804)18:5<505::AID-JOC263>3.0.CO;2-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2014: Spatially mapped reductions in the length of the Arctic sea ice season. Geophys. Res. Lett., 41, 43164322, https://doi.org/10.1002/2014GL060434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., T. C. Grenfell, B. Light, and P. V. Hobbs, 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 107, 8044, https://doi.org/10.1029/2000JC000438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. Richter-Menge, B. Elder, T. Arbetter, K. Claffey, and C. Polashenski, 2017: Observing and understanding climate change: Monitoring the mass balance, motion, and thickness of Arctic sea ice. Cold Regions Research and Engineering Laboratory, accessed 20 January 2017, http://imb-crrel-dartmouth.org/imb.crrel/buoysum.htm.

  • Radionov, V. F., N. N. Bryazgin, and E. I. Alexandrov, 1997: The snow cover of the Arctic Basin. Applied Physics Laboratory Tech. Rep. APL-UW TR 9701, 95 pp.

  • Rawlins, M. A., and Coauthors, 2010: Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations. J. Climate, 23, 57155737, https://doi.org/10.1175/2010JCLI3421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, A. N., D. H. Bromwich, E. N. Sinclair, and R. I. Cullather, 2001: The atmospheric hydrologic cycle over the Arctic Basin from reanalyses. Part II: Interannual variability. J. Climate, 14, 24142429, https://doi.org/10.1175/1520-0442(2001)014<2414:TAHCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and C. M. Hurst, 2000: Representation of mean Arctic precipitation from NCEP–NCAR and ERA reanalyses. J. Climate, 13, 182201, https://doi.org/10.1175/1520-0442(2000)013<0182:ROMAPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and A. P. Barrett, 2008: The summer cyclone maximum over the central Arctic Ocean. J. Climate, 21, 10481065, https://doi.org/10.1175/2007JCLI1810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. E. Box, R. G. Barry, and J. E. Walsh, 1993: Characteristics of Arctic synoptic activity, 1952–1989. Meteor. Atmos. Phys., 51, 147164, https://doi.org/10.1007/BF01030491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., R. G. Barry, and J. E. Walsh, 1995: Atmospheric water vapor characteristics at 70°N. J. Climate, 8, 719731, https://doi.org/10.1175/1520-0442(1995)008<0719:AWVCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, and F. Lo, 2005: Northern high-latitude precipitation as depicted by atmospheric reanalyses and satellite retrievals. Mon. Wea. Rev., 133, 34073430, https://doi.org/10.1175/MWR3047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1982: Methods of correction for systematic error in point precipitation measurement for operational use. Operational Hydrology Rep. 589, WMO, 91 pp.

  • Simmonds, I., C. Burke, and K. Keay, 2008: Arctic climate change as manifest in cyclone behavior. J. Climate, 21, 57775796, https://doi.org/10.1175/2008JCLI2366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, https://doi.org/10.1002/qj.49711649210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., J. Holmgren, and D. K. Perovich, 2002: Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and spatial variability. J. Geophys. Res., 107, 8047, https://doi.org/10.1029/2000JC000400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1998: Parameterization of condensation and associated clouds in models for weather prediction and general simulation. Physically-Based Modelling and Simulation of Climate and Climatic Change: Part 1, M. E. Schlesinger, Ed., D. Reidel, 433–461.

    • Crossref
    • Export Citation
  • Tao, W.-K., and J. Simpson, 1993: The Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 1954, https://doi.org/10.3319/TAO.1993.4.1.35(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) Model. Meteor. Atmos. Phys., 82, 97137, https://doi.org/10.1007/s00703-001-0594-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthor, 2012: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos. Chem. Phys., 12, 68636889, https://doi.org/10.5194/acp-12-6863-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942, https://doi.org/10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., T. Koike, and K. Onogi, 2008: Progress and prospects for reanalysis for weather and climate. Eos, Trans. Amer. Geophys. Union, 89, 234235, https://doi.org/10.1029/2008EO260002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Elsevier, 504 pp.

  • Walsh, J. E., V. Kattsov, D. Portis, and V. Meleshko, 1998: Arctic precipitation and evaporation: Model results and observational estimates. J. Climate, 11, 7287, https://doi.org/10.1175/1520-0442(1998)011<0072:APAEMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., I. G. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R. Colony, 1999: Snow depth on Arctic sea ice. J. Climate, 12, 18141829, https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, M. A., I. G. Rigor, S. V. Nghiem, N. T. Kurtz, S. L. Farrell, D. K. Perovich, and M. Sturm, 2014: Interdecadal changes in snow depth on Arctic sea ice. J. Geophys. Res. Oceans, 119, 53955406, https://doi.org/10.1002/2014JC009985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wingham, D. J., and Coauthors, 2006: CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. Adv. Space Res., 37, 841871, https://doi.org/10.1016/j.asr.2005.07.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 1999: An improved precipitation climatology for the Arctic Ocean. Geophys. Res. Lett., 26, 16251628, https://doi.org/10.1029/1999GL900311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and Coauthors, 1995: Accuracy of Tretyakov precipitation gauge: Result of WMO intercomparison. Hydrol. Processes, 9, 877895, https://doi.org/10.1002/hyp.3360090805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17, 23002317, https://doi.org/10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1459 336 44
PDF Downloads 1299 224 10