Metric-Dependent Tendency of Tropical Belt Width Changes during the Last Glacial Maximum

Na Wang Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Na Wang in
Current site
Google Scholar
PubMed
Close
,
Dabang Jiang Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Joint Laboratory for Climate and Environmental Change, Chengdu University of Information Technology, Chengdu, and Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Dabang Jiang in
Current site
Google Scholar
PubMed
Close
, and
Xianmei Lang Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xianmei Lang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Motivated by studies of tropical expansion under modern global warming, the behavior of the tropical belt during the Last Glacial Maximum (LGM) relative to the preindustrial period has been investigated in this study, using simulations from phase 3 of the Paleoclimate Modelling Intercomparison Project (PMIP3) under the framework of phase 5 of the Coupled Model Intercomparison Project (CMIP5). The tropical belt width changes determined by multiple metrics present two opposite tendencies. One refers to the poleward migration of the tropical edge as measured by the steep tropopause gradient and the subtropical jet, and the other suggests that the LGM tropics become narrower as measured by the Hadley cell extent, the eddy-driven jet, and the latitude where precipitation minus evaporation equals zero. The magnitude of such changes widely differs across models and metrics. In absolute terms, the multimodel mean total width changes range from 0.6° to 1.7° among metrics, with contributions predominantly from the Northern Hemisphere. Furthermore, the two metrics that indicate tropical widening are located in the upper troposphere. Such widening is closely related to the vertical and meridional temperature gradient changes in the subtropical regions. The other metrics are located in the middle and lower troposphere, and their variations are directly or indirectly related to changes in the low-level baroclinicity. The diverse responses of metrics to the LGM boundary conditions suggest that the tropical belt width changes and their climatic impacts are distinguished by the different measurements. The selection of metrics should correspond to the specific tropical properties of concern.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dabang Jiang, jiangdb@mail.iap.ac.cn

Abstract

Motivated by studies of tropical expansion under modern global warming, the behavior of the tropical belt during the Last Glacial Maximum (LGM) relative to the preindustrial period has been investigated in this study, using simulations from phase 3 of the Paleoclimate Modelling Intercomparison Project (PMIP3) under the framework of phase 5 of the Coupled Model Intercomparison Project (CMIP5). The tropical belt width changes determined by multiple metrics present two opposite tendencies. One refers to the poleward migration of the tropical edge as measured by the steep tropopause gradient and the subtropical jet, and the other suggests that the LGM tropics become narrower as measured by the Hadley cell extent, the eddy-driven jet, and the latitude where precipitation minus evaporation equals zero. The magnitude of such changes widely differs across models and metrics. In absolute terms, the multimodel mean total width changes range from 0.6° to 1.7° among metrics, with contributions predominantly from the Northern Hemisphere. Furthermore, the two metrics that indicate tropical widening are located in the upper troposphere. Such widening is closely related to the vertical and meridional temperature gradient changes in the subtropical regions. The other metrics are located in the middle and lower troposphere, and their variations are directly or indirectly related to changes in the low-level baroclinicity. The diverse responses of metrics to the LGM boundary conditions suggest that the tropical belt width changes and their climatic impacts are distinguished by the different measurements. The selection of metrics should correspond to the specific tropical properties of concern.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dabang Jiang, jiangdb@mail.iap.ac.cn
Save
  • Abe-Ouchi, A., and Coauthors, 2015: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci. Model Dev., 8, 36213637, https://doi.org/10.5194/gmd-8-3621-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., T. Schneider, and N. Harnik, 2014: Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Climate, 27, 74507461, https://doi.org/10.1175/JCLI-D-14-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and O. Ajoku, 2016: Future aerosol reductions and widening of the northern tropical belt. J. Geophys. Res. Atmos., 121, 67656786, https://doi.org/10.1002/2016JD024803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and M. Kovilakam, 2017: The role of natural climate variability in recent tropical expansion. J. Climate, 30, 63296350, https://doi.org/10.1175/JCLI-D-16-0735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012: Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350354, https://doi.org/10.1038/nature11097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., J. R. Norris, and M. Kovilakam, 2014: Influence of anthropogenic aerosols and the Pacific Decadal Oscillation on tropical belt width. Nat. Geosci., 7, 270274, https://doi.org/10.1038/ngeo2091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008GL033614.

  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, https://doi.org/10.1002/jgrd.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Agostino, R., P. Lionello, O. Adam, and T. Schneider, 2017: Factors controlling Hadley circulation changes from the Last Glacial Maximum to the end of the 21st century. Geophys. Res. Lett., 44, 85858591, https://doi.org/10.1002/2017GL074533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N., and T. Birner, 2017: On the discrepancies in tropical belt expansion between reanalyses and climate models and among tropical belt width metrics. J. Climate, 30, 12111231, https://doi.org/10.1175/JCLI-D-16-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 10611078, https://doi.org/10.1175/JCLI-D-11-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrera, I., and Coauthors, 1999: Tropical climates at the Last Glacial Maximum: A new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Climate Dyn., 15, 823856, https://doi.org/10.1007/s003820050317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, https://doi.org/10.1029/2007GL031115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179, https://doi.org/10.1126/science.1125566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gersonde, R., and Coauthors, 2003: Last glacial sea surface temperatures and sea-ice extent in the Southern Ocean (Atlantic-Indian sector): A multiproxy approach. Paleoceanogr. Paleoclimatol., 18, 1061, https://doi.org/10.1029/2002PA000809.

    • Search Google Scholar
    • Export Citation
  • Grassi, B., G. Redaelli, P. O. Canziani, and G. Visconti, 2012: Effects of the PDO phase on the tropical belt width. J. Climate, 25, 32823290, https://doi.org/10.1175/JCLI-D-11-00244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, https://doi.org/10.5194/acp-7-5229-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., L. Tao, and J. Liu, 2013: Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv. Atmos. Sci., 30, 790795, https://doi.org/10.1007/s00376-012-2187-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., H. Huang, and C. Zhou, 2018: Widening and weakening of the Hadley circulation under global warming. Sci. Bull., 63, 640644, https://doi.org/10.1016/j.scib.2018.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D., Z. Tian, X. Lang, M. Kageyama, and G. Ramstein, 2015: The concept of global monsoon applied to the last glacial maximum: A multi-model analysis. Quat. Sci. Rev., 126, 126139, https://doi.org/10.1016/j.quascirev.2015.08.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and L. M. Polvani, 2011: The interannual relationship between the latitude of the eddy-driven jet and the edge of the Hadley cell. J. Climate, 24, 563568, https://doi.org/10.1175/2010JCLI4077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., and C. C. Ummenhofer, 2014: On the dynamics of the Hadley circulation and subtropical drying. Climate Dyn., 42, 22592269, https://doi.org/10.1007/s00382-014-2129-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohfeld, K. E., R. M. Graham, A. M. de Boer, L. C. Sime, E. W. Wolff, C. Le Quéré, and L. Bopp, 2013: Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis. Quat. Sci. Rev., 68, 7695, https://doi.org/10.1016/j.quascirev.2013.01.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laîné, A., and Coauthors, 2009: Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: Energetic study, seasonal cycle, precipitation. Climate Dyn., 32, 593614, https://doi.org/10.1007/s00382-008-0391-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., and H. Nguyen, 2015: Regional characteristics of tropical expansion and the role of climate variability. J. Geophys. Res. Atmos., 120, 68096824, https://doi.org/10.1002/2015JD023130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., H. Nguyen, and B. Timbal, 2012: An observational analysis of Southern Hemisphere tropical expansion. J. Geophys. Res., 117, D17112, https://doi.org/10.1029/2011JD017033.

    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., S. Sherwood, R. Allen, and L. Shi, 2017: Natural variations of tropical width and recent trends. Geophys. Res. Lett., 44, 38253832, https://doi.org/10.1002/2016GL072097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. P. Clark, and M. C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14, 27632768, https://doi.org/10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., and S.-W. Son, 2013: Multimodel attribution of the Southern Hemisphere Hadley cell widening: Major role of ozone depletion. J. Geophys. Res. Atmos., 118, 30073015, https://doi.org/10.1002/jgrd.50232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 18281844, https://doi.org/10.1175/1520-0442(2004)017<1828:SVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–345, https://doi.org/10.1029/147GM18.

    • Crossref
    • Export Citation
  • Nguyen, H., A. Evans, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability, and change. J. Climate, 26, 33573376, https://doi.org/10.1175/JCLI-D-12-00224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oster, J. L., D. E. Ibarra, M. J. Winnick, and K. Maher, 2015: Steering of westerly storms over western North America at the Last Glacial Maximum. Nat. Geosci., 8, 201205, https://doi.org/10.1038/ngeo2365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, https://doi.org/10.1175/2010JCLI3772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichler, T., M. Dameris, and R. Sausen, 2003: Determining the tropopause height from gridded data. Geophys. Res. Lett., 30, 2042, https://doi.org/10.1029/2003GL018240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., I. M. Held, J. Fields, and J.-L. Thiffeault, 2001: The general circulation of the atmosphere: 2000 program of study in geophysical fluid dynamics. Woods Hole Oceanographic Institution Tech. Rep. WHOI-2001-03, 179 pp., https://darchive.mblwhoilibrary.org/handle/1912/15.

  • Seidel, D. J., and W. J. Randel, 2007: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res., 112, D20113, https://doi.org/10.1029/2007JD008861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., L. M. Polvani, D. W. Waugh, and S. M. Davis, 2016: Contrasting upper and lower atmospheric metrics of tropical expansion in the Southern Hemisphere. Geophys. Res. Lett., 43, 10 49610 503, https://doi.org/10.1002/2016GL070917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, https://doi.org/10.1029/2009GL038671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., S.-Y. Kim, and S.-K. Min, 2018: Widening of the Hadley cell from Last Glacial Maximum to future climate. J. Climate, 31, 267281, https://doi.org/10.1175/JCLI-D-17-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, L., Y. Hu, and J. Liu, 2016: Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Climate Dyn., 46, 33373350, https://doi.org/10.1007/s00382-015-2772-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press, 773 pp.

    • Crossref
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, https://doi.org/10.1175/JAS3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, N., D. Jiang, and X. Lang, 2018: Northern westerlies during the Last Glacial Maximum: Results from CMIP5 simulations. J. Climate, 31, 11351153, https://doi.org/10.1175/JCLI-D-17-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and Coauthors, 2018: Revisiting the relationship among metrics of tropical expansion. J. Climate, 31, 75657581, https://doi.org/10.1175/JCLI-D-18-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., E. J. Highwood, and N. J. Dunstone, 2013: The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett., 8, 024033, https://doi.org/10.1088/1748-9326/8/2/024033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology—A three-dimensional science: Second session of the commission for aerology. WMO Bull., 4, 134138.

  • Yan, Z., and N. Petit-Maire, 1994: The last 140 ka in the Afro-Asian arid/semi-arid transitional zone. Palaeogeogr. Palaeoclimatol. Palaeoecol., 110, 217233, https://doi.org/10.1016/0031-0182(94)90085-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y. P., K.-M. Xu, Y. C. Sud, and A. K. Betts, 2011: Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J. Geophys. Res., 116, D09101, https://doi.org/10.1029/2010JD015197.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 182 55 5
PDF Downloads 213 51 3