Contribution of the Interdecadal Pacific Oscillation to the Recent Abrupt Decrease in Tropical Cyclone Genesis Frequency over the Western North Pacific since 1998

Jiuwei Zhao Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China, and International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Jiuwei Zhao in
Current site
Google Scholar
PubMed
Close
,
Ruifen Zhan Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China

Search for other papers by Ruifen Zhan in
Current site
Google Scholar
PubMed
Close
,
Yuqing Wang Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China, and International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
, and
Haiming Xu Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Haiming Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Previous studies have documented an abrupt decrease of tropical cyclone (TC) genesis frequency over the western North Pacific (WNP) since 1998. In this study, results from an objective clustering analysis demonstrated that this abrupt decrease is primarily related to the decrease in a cluster of TCs (C1) that mostly formed over the southeastern WNP, south of 15°N and east of the Philippines, and possessed long tracks. Further statistical analyses based on both best track TC data and global reanalysis data during 1980–2015 revealed that the genesis of C1 TCs was significantly modulated by the interdecadal Pacific oscillation (IPO), whose recent negative phase since 1998 corresponded to a La Niña–like sea surface temperature anomaly (SSTA) pattern, which strengthened the Walker circulation in the tropical Pacific and weakened the WNP monsoon trough, suppressing genesis of C1 TCs in the southeastern WNP and predominantly contributing to the decrease in TC genesis frequency over the entire WNP basin. These findings were further confirmed by results from similar analyses based on longer observational datasets and also the outputs from a 500-yr preindustrial general circulation model experiment using the Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Model, version 3. Additional analysis indicates that the decrease in C1 TC genesis frequency in the recent period was dominated during August–October, with the largest decrease in October.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Ruifen Zhan, zhanrf@typhoon.org.cn

Abstract

Previous studies have documented an abrupt decrease of tropical cyclone (TC) genesis frequency over the western North Pacific (WNP) since 1998. In this study, results from an objective clustering analysis demonstrated that this abrupt decrease is primarily related to the decrease in a cluster of TCs (C1) that mostly formed over the southeastern WNP, south of 15°N and east of the Philippines, and possessed long tracks. Further statistical analyses based on both best track TC data and global reanalysis data during 1980–2015 revealed that the genesis of C1 TCs was significantly modulated by the interdecadal Pacific oscillation (IPO), whose recent negative phase since 1998 corresponded to a La Niña–like sea surface temperature anomaly (SSTA) pattern, which strengthened the Walker circulation in the tropical Pacific and weakened the WNP monsoon trough, suppressing genesis of C1 TCs in the southeastern WNP and predominantly contributing to the decrease in TC genesis frequency over the entire WNP basin. These findings were further confirmed by results from similar analyses based on longer observational datasets and also the outputs from a 500-yr preindustrial general circulation model experiment using the Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Model, version 3. Additional analysis indicates that the decrease in C1 TC genesis frequency in the recent period was dominated during August–October, with the largest decrease in October.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Ruifen Zhan, zhanrf@typhoon.org.cn
Save
  • Bai, C., R. Zhang, S. Bao, X. San Liang, and W. Guo, 2018: Forecasting the tropical cyclone genesis over the Northwest Pacific through identifying the causal factors in cyclone–climate interactions. J. Atmos. Oceanic Technol., 35, 247259, https://doi.org/10.1175/JTECH-D-17-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, https://doi.org/10.1175/JCLI3457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007a: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, https://doi.org/10.1175/JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, https://doi.org/10.1175/JCLI4203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., S. Chen, G. Chen, and R. Wu, 2016: Intensified impact of northern tropical Atlantic SST on tropical cyclogenesis frequency over the western North Pacific after the late 1980s. Adv. Atmos. Sci., 33, 919930, https://doi.org/10.1007/s00376-016-5206-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944, https://doi.org/10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J. W., Y. Cha, T. Kim, and H. D. Kim, 2017: Interdecadal variation of tropical cyclone genesis frequency in late season over the western North Pacific. Int. J. Climatol., 37, 43354346, https://doi.org/10.1002/joc.5090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y., K. J. Ha, C. H. Ho, and C. E. Chung, 2015: Interdecadal change in typhoon genesis condition over the western North Pacific. Climate Dyn., 45, 32433255, https://doi.org/10.1007/s00382-015-2536-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., A. Voldoire, and O. Geoffroy, 2015: The recent global warming hiatus: What is the role of Pacific variability? Geophys. Res. Lett., 42, 880888, https://doi.org/10.1002/2014GL062775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, https://doi.org/10.1038/44326.

  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffney, S. J., A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil, 2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn., 29, 423440, https://doi.org/10.1007/s00382-007-0235-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 14481468, https://doi.org/10.1175/1520-0493(1991)119<1448:TCTCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1995: Large-scale circulation variability over the tropical western North Pacific. Part II: Persistence and transition characteristics. Mon. Wea. Rev., 123, 12471268, https://doi.org/10.1175/1520-0493(1995)123<1247:LSCVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, H., J. Yang, D. Gong, R. Mao, Y. Wang, and M. Gao, 2015: Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Climate Dyn., 45, 33173329, https://doi.org/10.1007/s00382-015-2541-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the Interdecadal Pacific Oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C. C., Y. K. Wu, and T. Li, 2016: Influence of climate regime shift on the interdecadal change in tropical cyclone activity over the Pacific Basin during the middle to late 1990s. Climate Dyn., 47, 25872600, https://doi.org/10.1007/s00382-016-2986-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., P.-S. Chu, H. Murakami, and X. Zhao, 2014: An abrupt decrease in the late-season typhoon activity over the western North Pacific. J. Climate, 27, 42964312, https://doi.org/10.1175/JCLI-D-13-00417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, F., T. Li, J. Liu, M. Bi, and M. Peng, 2018: Decrease of tropical cyclone genesis frequency in the western North Pacific since 1960s. Dyn. Atmos. Oceans, 81, 4250, https://doi.org/10.1016/j.dynatmoce.2017.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huangfu, J., R. Huang, W. Chen, T. Feng, and L. Wu, 2017: Interdecadal variation of tropical cyclone genesis and its relationship to the monsoon trough over the western North Pacific. Int. J. Climatol., 37, 35873596, https://doi.org/10.1002/joc.4939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huangfu, J., R. Huang, and W. Chen, 2018: Interdecadal variation of tropical cyclone genesis and its relationship to the convective activities over the central Pacific. Climate Dyn., 50, 14391450, https://doi.org/10.1007/s00382-017-3697-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-K., and K.-H. Seo, 2016: Cluster analysis of tropical cyclone tracks over the western North Pacific using a self-organizing map. J. Climate, 29, 37313751, https://doi.org/10.1175/JCLI-D-15-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lepage, Y., 1971: A combination of Wilcoxon’s and Ansari–Bradley’s statistics. Biometrika, 58, 213217, https://doi.org/10.1093/biomet/58.1.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, and Y. Deng, 2015: Impact of the interdecadal Pacific oscillation on tropical cyclone activity in the North Atlantic and Eastern North Pacific. Sci. Rep., 5, 12358, https://doi.org/10.1038/srep12358.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2013: Inactive period of western North Pacific tropical cyclone activity in 1998–2011. J. Climate, 26, 26142630, https://doi.org/10.1175/JCLI-D-12-00053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Climate, 26, 72987310, https://doi.org/10.1175/JCLI-D-12-00548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, B. D. Santer, and S.-P. Xie, 2016: Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat. Climate Change, 6, 10051008, https://doi.org/10.1038/nclimate3107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., and S.-P. Xie, 2016: Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci., 9, 753757, https://doi.org/10.1038/ngeo2792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. K. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319323, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, J., and P. J. Klotzbach, 2018: What has controlled the poleward migration of annual averaged location of tropical cyclone lifetime maximum intensity over the western North Pacific since 1961? Geophys. Res. Lett., 45, 11481156, https://doi.org/10.1002/2017GL076883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the Eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., M. Watanabe, and M. Mori, 2017: Significant aerosol influence on the recent decadal decrease in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett., 44, 94969504, https://doi.org/10.1002/2017GL075369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and Coauthors, 2016: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 6589, https://doi.org/10.1002/wcc.371.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., C. Wang, and B. Wang, 2015: Westward shift of western North Pacific tropical cyclogenesis. Geophys. Res. Lett., 42, 15371542, https://doi.org/10.1002/2015GL063450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2007: A regional ocean–atmosphere model for eastern Pacific climate: Toward reducing tropical biases. J. Climate, 20, 15041522, https://doi.org/10.1175/JCLI4080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., T. Li, Z. Tan, and Z. Zhu, 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865877, https://doi.org/10.1007/s00382-015-2618-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., and Y. Wang, 2017: Weak tropical cyclones dominate the poleward migration of the annual mean location of lifetime maximum intensity of Northwest Pacific tropical cyclones since 1980. J. Climate, 30, 68736882, https://doi.org/10.1175/JCLI-D-17-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and X. Lei, 2011a: Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521, https://doi.org/10.1175/2010JCLI3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and C.-C. Wu, 2011b: Impact of SSTA in the East Indian Ocean on the frequency of Northwest Pacific tropical cyclones: A regional atmospheric model study. J. Climate, 24, 62276242, https://doi.org/10.1175/JCLI-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and M. Wen, 2013: The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. J. Climate, 26, 24082415, https://doi.org/10.1175/JCLI-D-12-00798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and L. Tao, 2014: Intensified impact of East Indian Ocean SST anomaly on tropical cyclone genesis frequency over the western North Pacific. J. Climate, 27, 87248739, https://doi.org/10.1175/JCLI-D-14-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and J. Zhao, 2017: Intensified mega-ENSO has increased the proportion of intense tropical cyclones over the western Northwest Pacific since the late 1970s. Geophys. Res. Lett., 44, 11 95911 966, https://doi.org/10.1002/2017GL075916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. A. Vecchi, H. Murakami, G. Villarini, T. L. Delworth, X. Yang, and L. Jia, 2018: Dominant role of Atlantic Multidecadal Oscillation in the recent decadal changes in Western North Pacific tropical cyclone activity. Geophys. Res. Lett., 45, 354362, https://doi.org/10.1002/2017GL076397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific. Climate Dyn., 47, 315328, https://doi.org/10.1007/s00382-015-2837-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., R. Zhan, Y. Wang, and L. Tao, 2016: Intensified interannual relationship between tropical cyclone genesis frequency over the northwest Pacific and the SST gradient between the southwest Pacific and the western Pacific warm pool since the mid-1970s. J. Climate, 29, 38113830, https://doi.org/10.1175/JCLI-D-15-0729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., R. Zhan, and Y. Wang, 2018: Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia. Sci. Rep., 8, 6023, https://doi.org/10.1038/s41598-018-24402-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1933 759 278
PDF Downloads 1464 344 49