Abstract
This study investigates the mechanisms by which short time-scale perturbations to atmospheric processes can affect El Niño–Southern Oscillation (ENSO) in climate models. To this end a control simulation of NCAR’s Community Climate System Model is compared to a simulation in which the model’s atmospheric diabatic tendencies are perturbed every time step using a Stochastically Perturbed Parameterized Tendencies (SPPT) scheme. The SPPT simulation compares better with ECMWF’s twentieth-century reanalysis in having lower interannual sea surface temperature (SST) variability and more irregular transitions between El Niño and La Niña states, as expressed by a broader, less peaked spectrum. Reduced-order linear inverse models (LIMs) derived from the 1-month lag covariances of selected tropical variables yield good representations of tropical interannual variability in the two simulations. In particular, the basic features of ENSO are captured by the LIM’s least damped oscillatory eigenmode. SPPT reduces the damping time scale of this eigenmode from 17 to 11 months, which is in better agreement with the 8 months obtained from reanalyses. This noise-induced stabilization is consistent with perturbations to the frequency of the ENSO eigenmode and explains the broadening of the SST spectrum (i.e., the greater ENSO irregularity). Although the improvement in ENSO shown here was achieved through stochastic physics parameterizations, it is possible that similar improvements could be realized through changes in deterministic parameterizations or higher numerical resolution. It is suggested that LIMs could provide useful insight into model sensitivities, uncertainties, and biases also in those cases.
Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0243.s1.
© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).