On the Dynamical Mechanisms Governing El Niño–Southern Oscillation Irregularity

Judith Berner National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Judith Berner in
Current site
Google Scholar
PubMed
Close
,
Prashant D. Sardeshmukh Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Prashant D. Sardeshmukh in
Current site
Google Scholar
PubMed
Close
, and
Hannah M. Christensen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hannah M. Christensen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the mechanisms by which short time-scale perturbations to atmospheric processes can affect El Niño–Southern Oscillation (ENSO) in climate models. To this end a control simulation of NCAR’s Community Climate System Model is compared to a simulation in which the model’s atmospheric diabatic tendencies are perturbed every time step using a Stochastically Perturbed Parameterized Tendencies (SPPT) scheme. The SPPT simulation compares better with ECMWF’s twentieth-century reanalysis in having lower interannual sea surface temperature (SST) variability and more irregular transitions between El Niño and La Niña states, as expressed by a broader, less peaked spectrum. Reduced-order linear inverse models (LIMs) derived from the 1-month lag covariances of selected tropical variables yield good representations of tropical interannual variability in the two simulations. In particular, the basic features of ENSO are captured by the LIM’s least damped oscillatory eigenmode. SPPT reduces the damping time scale of this eigenmode from 17 to 11 months, which is in better agreement with the 8 months obtained from reanalyses. This noise-induced stabilization is consistent with perturbations to the frequency of the ENSO eigenmode and explains the broadening of the SST spectrum (i.e., the greater ENSO irregularity). Although the improvement in ENSO shown here was achieved through stochastic physics parameterizations, it is possible that similar improvements could be realized through changes in deterministic parameterizations or higher numerical resolution. It is suggested that LIMs could provide useful insight into model sensitivities, uncertainties, and biases also in those cases.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0243.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Judith Berner, berner@ucar.edu

Abstract

This study investigates the mechanisms by which short time-scale perturbations to atmospheric processes can affect El Niño–Southern Oscillation (ENSO) in climate models. To this end a control simulation of NCAR’s Community Climate System Model is compared to a simulation in which the model’s atmospheric diabatic tendencies are perturbed every time step using a Stochastically Perturbed Parameterized Tendencies (SPPT) scheme. The SPPT simulation compares better with ECMWF’s twentieth-century reanalysis in having lower interannual sea surface temperature (SST) variability and more irregular transitions between El Niño and La Niña states, as expressed by a broader, less peaked spectrum. Reduced-order linear inverse models (LIMs) derived from the 1-month lag covariances of selected tropical variables yield good representations of tropical interannual variability in the two simulations. In particular, the basic features of ENSO are captured by the LIM’s least damped oscillatory eigenmode. SPPT reduces the damping time scale of this eigenmode from 17 to 11 months, which is in better agreement with the 8 months obtained from reanalyses. This noise-induced stabilization is consistent with perturbations to the frequency of the ENSO eigenmode and explains the broadening of the SST spectrum (i.e., the greater ENSO irregularity). Although the improvement in ENSO shown here was achieved through stochastic physics parameterizations, it is possible that similar improvements could be realized through changes in deterministic parameterizations or higher numerical resolution. It is suggested that LIMs could provide useful insight into model sensitivities, uncertainties, and biases also in those cases.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0243.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Judith Berner, berner@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 346.44 KB)
Save
  • Alexander, M. A., L. Matrosova, C. Penland, J. D. Scott, and P. Chang, 2008: Forecasting Pacific SSTs: Linear inverse model predictions of the PDO. J. Climate, 21, 385402, https://doi.org/10.1175/2007JCLI1849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., M. K. Davey, and D. L. Anderson, 1995: Decadal and seasonal dependence of ENSO prediction skill. J. Climate, 8, 27052715, https://doi.org/10.1175/1520-0442(1995)008<2705:DASDOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., 2005: Linking nonlinearity and non-Gaussianity of planetary wave behavior by the Fokker–Planck equation. J. Atmos. Sci., 62, 20982117, https://doi.org/10.1175/JAS3468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., G. Shutts, M. Leutbecher, and T. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626, https://doi.org/10.1175/2008JAS2677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., and Coauthors, 2017: Stochastic parameterization: Toward a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565588, https://doi.org/10.1175/BAMS-D-15-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., and D. B. Stephenson, 1999: The normality of El Niño. Geophys. Res. Lett., 26, 10271030, https://doi.org/10.1029/1999GL900161.

  • Christensen, H., J. Berner, D. R. Coleman, and T. Palmer, 2017: Stochastic parameterization and El Niño–Southern Oscillation. J. Climate, 30, 1738, https://doi.org/10.1175/JCLI-D-16-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., 2000: A fundamental limitation of Markov models. J. Atmos. Sci., 57, 21582168, https://doi.org/10.1175/1520-0469(2000)057<2158:AFLOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and C. Deser, 2014: Nonlinear controls on the persistence of La Niña. J. Climate, 27, 73357355, https://doi.org/10.1175/JCLI-D-14-00033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1993: Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids, 5A, 26002609, https://doi.org/10.1063/1.858894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, https://doi.org/10.1017/CBO9781107415324.020.

    • Crossref
    • Export Citation
  • Flügel, M., P. Chang, and C. Penland, 2004: The role of stochastic forcing in modulating ENSO predictability. J. Climate, 17, 31253140, https://doi.org/10.1175/1520-0442(2004)017<3125:TROSFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., 1983: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer Verlag, 442 pp.

  • Gehne, M., R. Kleeman, and K. E. Trenberth, 2014: Irregularity and decadal variation in ENSO: A simplified model based on principal oscillation patterns. Climate Dyn., 43, 33273350, https://doi.org/10.1007/s00382-014-2108-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. Van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340, https://doi.org/10.1175/2008BAMS2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison D. E., and G. A. Vecchi, 1997: Westerly wind events in the tropical Pacific, 1986–95. J. Climate, 10, 31313156, https://doi.org/10.1175/1520-0442(1997)010<3131:WWEITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horsthemke, W., and R. Levefer, 1984: Noise-Induced Transitions. Springer Verlag, 318 pp.

  • Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos Sea Ice Model user’s manual, version 4. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Jin, F.‐F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble‐mean dynamics of the ENSO recharge oscillator under state‐dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, https://doi.org/10.1029/2006GL027372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleeman, R., 2011: Spectral analysis of multidimensional stochastic geophysical models with an application to decadal ENSO variability. J. Atmos. Sci., 68, 1325, https://doi.org/10.1175/2010JAS3546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54, 753767, https://doi.org/10.1175/1520-0469(1997)054<0753:ATFTLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., T. Barnett, M. Cane, M. Flügel, N. E. Graham, H. von Storch, J.-S. Xu, and S. Zebiak, 1994: A review of ENSO prediction studies. Climate Dyn., 9, 167179, https://doi.org/10.1007/BF00208250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., E. Guilyardi, J.-P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601620, https://doi.org/10.1007/s00382-004-0457-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 23152339, https://doi.org/10.1002/qj.3094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F., and F.-F. Jin, 2010: Noise-induced instability in the ENSO recharge oscillator. J. Atmos. Sci., 67, 529542, https://doi.org/10.1175/2009JAS3213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F., and F.-F. Jin, 2017: A simple approach to quantifying the noise–ENSO interaction. Part I: Deducing the state-dependency of the windstress forcing using monthly mean data. Climate Dyn., 48, 118, https://doi.org/10.1007/s00382-015-2748-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and B. A. Taft, 1988: Dynamics of seasonal and intraseasonal variability in the eastern equatorial Pacific. J. Phys. Oceanogr., 18, 17131732, https://doi.org/10.1175/1520-0485(1988)018<1713:DOSAIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 11991220, https://doi.org/10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 2017: Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures? Geophys. Res. Lett., 44, 85208529, https://doi.org/10.1002/2017GL074088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22, 29582977, https://doi.org/10.1175/2008JCLI2659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., M. A. Alexander, and J. D. Scott, 2011: An empirical model of tropical ocean dynamics. Climate Dyn., 37, 1823, https://doi.org/10.1007/s00382-011-1034-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304, https://doi.org/10.1002/qj.49712757202.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 44 pp., https://www.ecmwf.int/sites/default/files/elibrary/2009/11577-stochastic-parametrization-and-model-uncertainty.pdf.

  • Penland, C., 1989: Random forcing and forecasting using principal oscillation pattern analysis. Mon. Wea. Rev., 117, 21652185, https://doi.org/10.1175/1520-0493(1989)117<2165:RFAFUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., 2003: Noise out of chaos and why it won’t go away. Bull. Amer. Meteor. Soc., 84, 921926, https://doi.org/10.1175/BAMS-84-7-Penland.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6, 10671076, https://doi.org/10.1175/1520-0442(1993)006<1067:PONSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1994: A balance condition for stochastic numerical models with application to the El Niño–Southern Oscillation. J. Climate, 7, 13521372, https://doi.org/10.1175/1520-0442(1994)007<1352:ABCFSN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P., and P. Sura, 2009: Reconciling non-Gaussian climate statistics with linear dynamics. J. Climate, 22, 11931207, https://doi.org/10.1175/2008JCLI2358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P., C. Penland, and M. Newman, 2001: Rossby waves in a stochastically fluctuating medium. Stochastic Climate Models, P. Imkeller and J.-S. von Storch, Eds., Progress in Probability Series, Vol. 49, Birkäuser Verlag, 369–384, https://doi.org/10.1007/978-3-0348-8287-3_17.

    • Crossref
    • Export Citation
  • Sardeshmukh, P., C. Penland, and M. Newman, 2003: Drifts induced by multiplicative red noise with application to climate. EPL, 63, 498, https://doi.org/10.1209/epl/i2003-00550-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, S.-I., P. D. Sardeshmukh, and K. Pegion, 2010: Realism of local and remote feedbacks on tropical sea surface temperatures in climate models. J. Geophys. Res., 115, D21110, https://doi.org/10.1029/2010JD013927.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43, 805828, https://doi.org/10.1007/s00382-013-1980-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and L. Yu, 2007: Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J. Climate, 20, 27602768, https://doi.org/10.1175/JCLI4138a.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., T. Bruns, I. Fischer-Bruns, and K. Hasselmann, 1988: Principal oscillation pattern analysis of the 30- to 60-day oscillation in general circulation model equatorial troposphere. J. Geophys. Res., 93, 11 02211 036, https://doi.org/10.1029/JD093iD09p11022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., G. Bürger, R. Schnur, and J.-S. von Storch, 1995: Principal oscillation patterns: A review. J. Climate, 8, 377400, https://doi.org/10.1175/1520-0442(1995)008<0377:POPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., S. Corti, T. Palmer, and F. Vitart, 2014: Addressing model error through atmospheric stochastic physical parametrizations: Impact on the coupled ECMWF seasonal forecasting system. Philos. Trans. Roy. Soc. London, 372A, 2018, https://doi.org/10.1098/rsta.2013.0290.

    • Search Google Scholar
    • Export Citation
  • Wu, D.-H., D. L. Anderson, and M. K. Davey, 1994: ENSO prediction experiments using a simple ocean-atmosphere model. Tellus, 46A, 465480, https://doi.org/10.3402/tellusa.v46i4.15493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J.-S., and H. von Storch, 1990: Predicting the state of the Southern Oscillation using principal oscillation pattern analysis. J. Climate, 3, 13161329, https://doi.org/10.1175/1520-0442(1990)003<1316:PTSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and B. P. Kirtman, 2006: Origin of decadal El Niño–Southern Oscillation–like variability in a coupled general circulation model. J. Geophys. Res., 111, C01009, https://doi.org/10.1029/2005JC002985.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and M. M. Rienecker, 1998: Evidence of an extratropical atmospheric influence during the onset of the 1997–98 El Niño. Geophys. Res. Lett., 25, 35373540, https://doi.org/10.1029/98GL02628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., 2012: Forecast skill and predictability of observed Atlantic sea surface temperatures. J. Climate, 25, 50475056, https://doi.org/10.1175/JCLI-D-11-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1145 677 129
PDF Downloads 434 72 7