The Climate Response to Multiple Volcanic Eruptions Mediated by Ocean Heat Uptake: Damping Processes and Accumulation Potential

Mukund Gupta Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Mukund Gupta in
Current site
Google Scholar
PubMed
Close
and
John Marshall Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by John Marshall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A hierarchy of models is used to explore the role of the ocean in mediating the response of the climate to a single volcanic eruption and to a series of eruptions by drawing cold temperature anomalies into its interior, as measured by the ocean heat exchange parameter q (W m−2 K−1). The response to a single (Pinatubo-like) eruption comprises two primary time scales: one fast (year) and one slow (decadal). Over the fast time scale, the ocean sequesters cooling anomalies induced by the eruption into its depth, enhancing the damping rate of sea surface temperature (SST) relative to that which would be expected if the atmosphere acted alone. This compromises the ability to constrain atmospheric feedback rates measured by λ (~1 W m−2 K−1) from study of the relaxation of SST back toward equilibrium, but yields information about the transient climate sensitivity proportional to λ + q. Our study suggests that q can significantly exceed λ in the immediate aftermath of an eruption. Shielded from damping to the atmosphere, the effect of the volcanic eruption persists on longer decadal time scales. We contrast the response to an “impulse” from that of a “step” in which the forcing is kept constant in time. Finally, we assess the “accumulation potential” of a succession of volcanic eruptions over time, a process that may in part explain the prolongation of cold surface temperatures experienced during, for example, the Little Ice Age.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0703.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mukund Gupta, guptam@mit.edu

Abstract

A hierarchy of models is used to explore the role of the ocean in mediating the response of the climate to a single volcanic eruption and to a series of eruptions by drawing cold temperature anomalies into its interior, as measured by the ocean heat exchange parameter q (W m−2 K−1). The response to a single (Pinatubo-like) eruption comprises two primary time scales: one fast (year) and one slow (decadal). Over the fast time scale, the ocean sequesters cooling anomalies induced by the eruption into its depth, enhancing the damping rate of sea surface temperature (SST) relative to that which would be expected if the atmosphere acted alone. This compromises the ability to constrain atmospheric feedback rates measured by λ (~1 W m−2 K−1) from study of the relaxation of SST back toward equilibrium, but yields information about the transient climate sensitivity proportional to λ + q. Our study suggests that q can significantly exceed λ in the immediate aftermath of an eruption. Shielded from damping to the atmosphere, the effect of the volcanic eruption persists on longer decadal time scales. We contrast the response to an “impulse” from that of a “step” in which the forcing is kept constant in time. Finally, we assess the “accumulation potential” of a succession of volcanic eruptions over time, a process that may in part explain the prolongation of cold surface temperatures experienced during, for example, the Little Ice Age.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0703.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mukund Gupta, guptam@mit.edu

Supplementary Materials

    • Supplemental Materials (PDF 312.84 KB)
Save
  • Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269284, https://doi.org/10.1016/j.ocemod.2003.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adcroft, A., J.-M. Campin, C. Hill, and J. Marshall, 2004: Implementation of an atmosphere–ocean general circulation model on the expanded spherical cube. Mon. Wea. Rev., 132, 28452863, https://doi.org/10.1175/MWR2823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atwood, A. R., E. Wu, D. M. W. Frierson, D. S. Battisti, and J. P. Sachs, 2016: Quantifying climate forcings and feedbacks over the last millennium in the CMIP5–PMIP3 models. J. Climate, 29, 11611178, https://doi.org/10.1175/JCLI-D-15-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., A. M. Ekman, and H. Rodhe, 2010: Response to the eruption of Mount Pinatubo in relation to climate sensitivity in the CMIP3 models. Climate Dyn., 35, 875886, https://doi.org/10.1007/s00382-010-0777-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2013: Land–ocean warming contrast over a wide range of climates: Convective quasi-equilibrium theory and idealized simulations. J. Climate, 26, 40004016, https://doi.org/10.1175/JCLI-D-12-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., N. J. White, and J. M. Arblaster, 2005: Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature, 438, 7477, https://doi.org/10.1038/nature04237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole‐Dai, J., D. G. Ferris, A. L. Lanciki, J. Savarino, M. H. Thiemens, and J. R. McConnell, 2013: Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record. J. Geophys. Res. Atmos., 118, 74597466, https://doi.org/10.1002/jgrd.50587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., 2000: Causes of climate change over the past 1000 years. Science, 289, 270277, https://doi.org/10.1126/science.289.5477.270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., and M. B. Unterman, 2013: Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst. Sci. Data, 5, 187197, https://doi.org/10.5194/essd-5-187-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., G. Zielinski, B. Vinther, R. Udisti, K. Kreutz, J. Cole-Dai, and E. Castellano, 2008: Volcanism and the Little Ice Age. PAGES News, No. 2, PAGES International Project Office, Bern, Switzerland, 22–23.

    • Crossref
    • Export Citation
  • Donohoe, A., and D. Battisti, 2011: Atmospheric and surface contributions to planetary albedo. J. Climate, 24, 44024418, https://doi.org/10.1175/2011JCLI3946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and J.-M. Campin, 2010: Localization of deep water formation: Role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Climate, 23, 14561476, https://doi.org/10.1175/2009JCLI3197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Free, M., and A. Robock, 1999: Global warming in the context of the Little Ice Age. J. Geophys. Res., 104, 1905719070, https://doi.org/10.1029/1999JD900233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I : Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., D. Saint-Martin, D. J. L. Olivié, A. Voldoire, G. Bellon, and S. Tytéca, 2013: Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Climate, 26, 18411857, https://doi.org/10.1175/JCLI-D-12-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., T. M. L. Wigley, B. D. Santer, J. M. Gregory, K. AchutaRao, and K. E. Taylor, 2006: Volcanoes and climate: Krakatoa’s signature persists in the ocean. Nature, 439, 675, https://doi.org/10.1038/439675a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, https://doi.org/10.1007/s003820000059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. M. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113, D23105, https://doi.org/10.1029/2008JD010405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., T. Andrews, P. Good, T. Mauritsen, and P. M. Forster, 2016: Small global-mean cooling due to volcanic radiative forcing. Climate Dyn., 47, 39793991, https://doi.org/10.1007/s00382-016-3055-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., G. Russell, A. Lacis, I. Fung, D. Rind, and P. Stone, 1985: Climate response times: Dependence on climate sensitivity and ocean mixing. Science, 229, 857859, https://doi.org/10.1126/science.229.4716.857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., T. J. Crowley, S. K. Baum, K. Kim, and W. T. Hyde, 2003: Detection of volcanic, solar and greenhouse gas signals in paleo-reconstructions of Northern Hemispheric temperature. Geophys. Res. Lett., 30, 1242, https://doi.org/10.1029/2002GL016635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., T. J. Crowley, W. T. Hyde, and D. J. Frame, 2006: Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature, 440, 10291032, https://doi.org/10.1038/nature04679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427, https://doi.org/10.1175/2009JCLI3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, 1680316821, https://doi.org/10.1029/2000JC900072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., and J. Marshall, 1995: Regimes and scaling laws for rotating deep convection in the ocean. Dyn. Atmos. Oceans, 21, 227256, https://doi.org/10.1016/0377-0265(94)00393-B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostov, Y., K. Armour, and J. Marshall, 2014: Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophys. Res. Lett., 41, 21082116, https://doi.org/10.1002/2013GL058998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and C. Giannitsis, 1998: On the climatic implications of volcanic cooling. J. Geophys. Res., 103, 59295941, https://doi.org/10.1029/98JD00125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., I. M. Held, G. L. Stenchikov, F. Zeng, and L. W. Horowitz, 2014: Constraining transient climate sensitivity using coupled climate model simulations of volcanic eruptions. J. Climate, 27, 77817795, https://doi.org/10.1175/JCLI-D-14-00214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., M. Khodri, C. Frankignoul, and J. Servonnat, 2011: Volcanic impact on the Atlantic Ocean over the last millennium. Climate Past, 7, 14391455, https://doi.org/10.5194/cp-7-1439-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, G. H., and Coauthors, 2012: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neukom, R., and Coauthors, 2014: Inter-hemispheric temperature variability over the past millennium. Nat. Climate Change, 4, 362367, https://doi.org/10.1038/nclimate2174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otterå, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688694, https://doi.org/10.1038/ngeo955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, https://doi.org/10.1029/1998RG000054.

  • Santer, B. D., and Coauthors, 2001: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res., 106, 28 03328 059, https://doi.org/10.1029/2000JD000189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schurer, A. P., G. C. Hegerl, and S. P. Obrochta, 2015: Determining the likelihood of pauses and surges in global warming. Geophys. Res. Lett., 42, 59745982, https://doi.org/10.1002/2015GL064458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigl, M., and Coauthors, 2015: Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523, 543549, https://doi.org/10.1038/nature14565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock, 2002: Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science, 296, 727730, https://doi.org/10.1126/science.296.5568.727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., T. L. Delworth, V. Ramaswamy, R. J. Stouffer, A. Wittenberg, and F. Zeng, 2009: Volcanic signals in oceans. J. Geophys. Res., 114, D16104, https://doi.org/10.1029/2008JD011673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., 2004: Time scales of climate response. J. Climate, 17, 209217, https://doi.org/10.1175/1520-0442(2004)017<0209:TSOCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsutsui, J., 2017: Quantification of temperature response to CO2 forcing in atmosphere–ocean general circulation models. Climatic Change, 140, 287305, https://doi.org/10.1007/s10584-016-1832-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., C. M. Ammann, B. D. Santer, and S. C. Raper, 2005: Effect of climate sensitivity on the response to volcanic forcing. J. Geophys. Res., 110, D09107, https://doi.org/10.1029/2004JD005557.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., J. C. Marshall, and M. A. Spall, 1995: Does Stommel’s mixed layer “demon” work? J. Phys. Oceanogr., 25, 30893102, https://doi.org/10.1175/1520-0485(1995)025<3089:DSMLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of ocean heat uptake efficacy to transient climate change. J. Climate, 23, 23332344, https://doi.org/10.1175/2009JCLI3139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokohata, T., S. Emori, T. Nozawa, Y. Tsushima, T. Ogura, and M. Kimoto, 2005: Climate response to volcanic forcing: Validation of climate sensitivity of a coupled atmosphere‐ocean general circulation model. Geophys. Res. Lett., 32, L21710, https://doi.org/10.1029/2005GL023542.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 800 185 17
PDF Downloads 713 149 8