The Impacts of Atmospheric and Surface Parameters on Long-Term Variations in the Planetary Albedo

Bida Jian Key Laboratory for Semi-Arid Climate Change, Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Bida Jian in
Current site
Google Scholar
PubMed
Close
,
Jiming Li Key Laboratory for Semi-Arid Climate Change, Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jiming Li in
Current site
Google Scholar
PubMed
Close
,
Guoyin Wang Key Laboratory for Semi-Arid Climate Change, Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Guoyin Wang in
Current site
Google Scholar
PubMed
Close
,
Yongli He Key Laboratory for Semi-Arid Climate Change, Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Yongli He in
Current site
Google Scholar
PubMed
Close
,
Ying Han Key Laboratory for Semi-Arid Climate Change, Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Ying Han in
Current site
Google Scholar
PubMed
Close
,
Min Zhang Key Laboratory for Semi-Arid Climate Change, Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Min Zhang in
Current site
Google Scholar
PubMed
Close
, and
Jianping Huang Key Laboratory for Semi-Arid Climate Change, Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jianping Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Planetary albedo (PA; shortwave broadband albedo) and its long-term variations, which are controlled in a complex way by various atmospheric and surface properties, play a key role in controlling the global and regional energy budget. This study investigates the contributions of different atmospheric and surface properties to the long-term variations of PA based on 13 years (2003–15) of albedo, cloud, and ice coverage datasets from the Clouds and the Earth’s Radiant Energy System (CERES) Single Scanner Footprint edition 4A product, vegetation product from Moderate Resolution Imaging Spectroradiometer (MODIS), and surface albedo product from the Cloud, Albedo, and Radiation dataset, version 2 (CLARA-A2). According to the temporal correlation analysis, statistical results indicate that variations in PA are closely related to the variations of cloud properties (e.g., cloud fraction, ice water path, and liquid water path) and surface parameters (e.g., ice/snow percent coverage and normalized difference vegetation index), but their temporal relationships vary among the different regions. Generally, the stepwise multiple linear regression models can capture the observed PA anomalies for most regions. Based on the contribution calculation, cloud fraction dominates the variability of PA in the mid- and low latitudes while ice/snow percent coverage (or surface albedo) dominates the variability in the mid- and high latitudes. Changes in cloud liquid water path and ice water path are the secondary dominant factor over most regions, whereas change in vegetation cover is the least important factor over land. These results verify the effects of atmospheric and surface factors on planetary albedo changes and thus may be of benefit for improving the parameterization of the PA and determining the climate feedbacks.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0848.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiming Li, lijiming@lzu.edu.cn

Abstract

Planetary albedo (PA; shortwave broadband albedo) and its long-term variations, which are controlled in a complex way by various atmospheric and surface properties, play a key role in controlling the global and regional energy budget. This study investigates the contributions of different atmospheric and surface properties to the long-term variations of PA based on 13 years (2003–15) of albedo, cloud, and ice coverage datasets from the Clouds and the Earth’s Radiant Energy System (CERES) Single Scanner Footprint edition 4A product, vegetation product from Moderate Resolution Imaging Spectroradiometer (MODIS), and surface albedo product from the Cloud, Albedo, and Radiation dataset, version 2 (CLARA-A2). According to the temporal correlation analysis, statistical results indicate that variations in PA are closely related to the variations of cloud properties (e.g., cloud fraction, ice water path, and liquid water path) and surface parameters (e.g., ice/snow percent coverage and normalized difference vegetation index), but their temporal relationships vary among the different regions. Generally, the stepwise multiple linear regression models can capture the observed PA anomalies for most regions. Based on the contribution calculation, cloud fraction dominates the variability of PA in the mid- and low latitudes while ice/snow percent coverage (or surface albedo) dominates the variability in the mid- and high latitudes. Changes in cloud liquid water path and ice water path are the secondary dominant factor over most regions, whereas change in vegetation cover is the least important factor over land. These results verify the effects of atmospheric and surface factors on planetary albedo changes and thus may be of benefit for improving the parameterization of the PA and determining the climate feedbacks.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0848.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiming Li, lijiming@lzu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.73 MB)
Save
  • Barnes, C. A., and D. P. Roy, 2008: Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change. Geophys. Res. Lett., 35, L09706, https://doi.org/10.1029/2008GL033567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, P. S. A., C. Atzberger, K. A. Høgda, B. Johansen, and A. K. Skidmore, 2006: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ., 100, 321334, https://doi.org/10.1016/j.rse.2005.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, F. A. M., H. Rodhe, R. J. Charlson, A. M. L. Ekman, and N. Loeb, 2006: 22 views of the global albedo—Comparison between 20 GCMs and two satellites. Tellus, 58A, 320330, https://doi.org/10.1111/j.1600-0870.2006.00181.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, F. A. M., A. Engstrom, R. Wood, and R. J. Charlson, 2017: Evaluation of hemispheric asymmetries in marine cloud radiative properties. J. Climate, 30, 41314147, https://doi.org/10.1175/JCLI-D-16-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, R. A., 2000: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408, 187190, https://doi.org/10.1038/35041545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, https://doi.org/10.1126/science.1155121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611619, https://doi.org/10.3402/tellusa.v21i5.10109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christopher, S. A., and J. L. Zhang, 2002: Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans. Geophys. Res. Lett., 29, 1859, https://doi.org/10.1029/2002GL014803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbett, J. G., and N. G. Loeb, 2015: On the relative stability of CERES reflected shortwave and MISR and MODIS visible radiance measurements during the Terra satellite mission. J. Geophys. Res. Atmos., 120, 11 60811 616, https://doi.org/10.1002/2015JD023484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dang, C., Q. Fu, and S. G. Warren, 2016: Effect of snow grain shape on snow albedo. J. Atmos. Sci., 73, 35733583, https://doi.org/10.1175/JAS-D-15-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Giuseppe, F., and A. M. Tompkins, 2015: Generalizing cloud overlap treatment to include the effect of wind shear. J. Atmos. Sci., 72, 28652876, https://doi.org/10.1175/JAS-D-14-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, https://doi.org/10.1175/JTECH-D-12-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. S. Battisti, 2011: Atmospheric and surface contributions to planetary albedo. J. Climate, 24, 44024418, https://doi.org/10.1175/2011JCLI3946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engström, A., F. A. M. Bender, R. J. Charlson, and R. Wood, 2015: The nonlinear relationship between albedo and cloud fraction on near-global, monthly mean scale in observations and in the CMIP5 model ensemble. Geophys. Res. Lett., 42, 95719578, https://doi.org/10.1002/2015GL066275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erlick, C., and V. Ramaswamy, 2003: Note on the definition of clear sky in calculations of shortwave cloud forcing. J. Geophys. Res., 108,4156, https://doi.org/10.1029/2002JD002990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forzieri, G., R. Alkama, D. G. Miralles, and A. Cescatti, 2017: Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 356, 11801184, https://doi.org/10.1126/science.aal1727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R., and R. Muñoz, 2004: The diurnal cycle in circulation and cloudiness over the subtropical southeast Pacific: A modeling study. J. Climate, 17, 16991710, https://doi.org/10.1175/1520-0442(2004)017<1699:TDCICA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J.-P., X.-Y. Zhang, Y.-R. Wu, Y. Zhaxi, H.-Z. Che, B. La, W. Wang, and X.-W. Li, 2011: Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980–2008. Atmos. Environ., 45, 68026811, https://doi.org/10.1016/j.atmosenv.2011.03.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halthore, R. N., and Coauthors, 2005: Intercomparison of shortwave radiative transfer codes and measurements. J. Geophys. Res., 110, D11206, https://doi.org/10.1029/2004JD005293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Y. L., J. P. Huang, H. H. Shugart, X. D. Guan, B. Wang, and K. L. Yu, 2017: Unexpected evergreen expansion in the Siberian forest under warming hiatus. J. Climate, 30, 50215039, https://doi.org/10.1175/JCLI-D-16-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy, 25, 441475, https://doi.org/10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y. X., S. Rodier, K. M. Xu, W. B. Sun, J. P. Huang, B. Lin, P. W. Zhai, and D. Josset, 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, https://doi.org/10.1029/2009JD012384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and Y. Yi, 1991: Inversion of a nonlinear dynamical model from the observation. Sci. China, 34B, 12461251.

  • Huang, J., P. Minnis, B. Lin, Y. Yi, M. M. Khaiyer, R. F. Arduini, A. Fan, and G. G. Mace, 2005: Advanced retrievals of multilayered cloud properties using multispectral measurements. J. Geophys. Res., 110, D15S18, https://doi.org/10.1029/2004JD005101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., T. H. Wang, W. C. Wang, Z. Q. Li, and H. R. Yan, 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11 39811 416, https://doi.org/10.1002/2014JD021796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and Coauthors, 2017: Dryland climate change: Recent progress and challenges. Rev. Geophys., 55, 719778, https://doi.org/10.1002/2016RG000550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195213, https://doi.org/10.1016/S0034-4257(02)00096-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 944 pp.

  • Karlsson, K.-G., and Coauthors, 2017: CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys., 17, 58095828, https://doi.org/10.5194/acp-17-5809-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashiwase, H., K. I. Ohshima, S. Nihashi, and H. Eicken, 2017: Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone. Sci. Rep., 7, 8170, https://doi.org/10.1038/s41598-017-08467-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, P. Minnis, J. A. Francis, T. P. Charlock, D. A. Rutan, E. E. Clothiaux, and S. Sun-Mack, 2006: Seasonal and interannual variations of top-of-atmosphere irradiance and cloud cover over polar regions derived from the CERES data set. Geophys. Res. Lett., 33, L19804, https://doi.org/10.1029/2006GL026685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharuk, V. I., M. L. Dvinskaya, K. J. Ranson, and S. T. Im, 2005: Expansion of evergreen conifers to the larch-dominated zone and climatic trends. Russ. J. Ecol., 36, 164170, https://doi.org/10.1007/s11184-005-0055-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharuk, V. I., K. J. Ranson, and M. L. Dvinskaya, 2007: Evidence of evergreen conifer invasion into larch dominated forests during recent decades in central Siberia. Eurasian J. For. Res., 10, 163171.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Y. Yi, P. Minnis, J. Huang, H. Yan, Y. Ma, W. Wang, and J. K. Ayers, 2011: Radiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data. J. Quant. Spectrosc. Radiat. Transfer, 112, 361375, https://doi.org/10.1016/j.jqsrt.2010.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., J. Huang, K. Stamnes, T. Wang, Q. Lv, and H. Jin, 2015: A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmos. Chem. Phys., 15, 519536, https://doi.org/10.5194/acp-15-519-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., M. Ma, X. Wu, and H. Yang, 2018: Snow cover and vegetation-induced decrease in global albedo from 2002 to 2016. J. Geophys. Res. Atmos., 123, 124138, https://doi.org/10.1002/2017JD027010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., M. Zhao, Y. Ming, J. C. Golaz, L. J. Donner, S. A. Klein, V. Ramaswamy, and S. C. Xie, 2013: Precipitation partitioning, tropical clouds, and intraseasonal variability in GFDL AM2. J. Climate, 26, 54535466, https://doi.org/10.1175/JCLI-D-12-00442.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, F. G. Rose, and D. R. Doelling, 2007: Variability in global top-of-atmosphere shortwave radiation between 2000 and 2005. Geophys. Res. Lett., 34, L03704, https://doi.org/10.1029/2006GL028196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., H. Wang, A. Cheng, S. Kato, J. T. Fasullo, K.-M. Xu, and R. P. Allan, 2016: Observational constraints on atmospheric and oceanic cross-equatorial heat transports: Revisiting the precipitation asymmetry problem in climate models. Climate Dyn., 46, 32393257, https://doi.org/10.1007/s00382-015-2766-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S., C. Jakob, A. Protat, and J. Delanoë, 2014: Characterizing observed midtopped cloud regimes associated with Southern Ocean shortwave radiation biases. J. Climate, 27, 61896203, https://doi.org/10.1175/JCLI-D-14-00139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., R. Eastman, D. L. Hartmann, and R. Wood, 2017: The change in low cloud cover in a warmed climate inferred from AIRS, MODIS, and ERA-Interim. J. Climate, 30, 36093620, https://doi.org/10.1175/JCLI-D-15-0734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and A. Myhre, 2003: Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes. J. Climate, 16, 15111524, https://doi.org/10.1175/1520-0442-16.10.1511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2005: Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties. The National Academies Press, 207 pp.

  • Nolin, A., R. L. Armstrong, and J. Maslanik, 1998: Near real-time SSM/I EASE-grid daily global ice concentration and snow extent. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 12 March 2018, http://nsidc.org/data/nise1.html.

  • Park, H., S. J. Ho, C. H. Ho, J. Kim, M. E. Brown, and M. E. Schaepman, 2015: Nonlinear response of vegetation green-up to local temperature variations in temperate and boreal forests in the Northern Hemisphere. Remote Sens. Environ., 165, 100108, https://doi.org/10.1016/j.rse.2015.04.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2015: Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biol., 21, 16011609, https://doi.org/10.1111/gcb.12795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pistone, K., I. Eisenman, and V. Ramanathan, 2014: Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl. Acad. Sci. USA, 111, 33223326, https://doi.org/10.1073/pnas.1318201111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., and A. Hall, 2005: Surface contribution to planetary albedo variability in cryosphere regions. J. Climate, 18, 52395252, https://doi.org/10.1175/JCLI3555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and A. M. DeAngelis, 2015: Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett., 42, 77677775, https://doi.org/10.1002/2015GL065627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandholt, I., K. Rasmussen, and J. Andersen, 2002: A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ., 79, 213224, https://doi.org/10.1016/S0034-4257(01)00274-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and Coauthors, 2016: Improving our fundamental understanding of the role of aerosol–cloud interactions in the climate system. Proc. Natl. Acad. Sci. USA, 113, 57815790, https://doi.org/10.1073/pnas.1514043113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, M., H. C. Kim, M. Huh, J. M. Yeom, C. S. Lee, K. S. Lee, S. Choi, and K. S. Han, 2016: Long-term variability of surface albedo and its correlation with climatic variables over Antarctica. Remote Sens., 8, 981, https://doi.org/10.3390/rs8120981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, https://doi.org/10.1175/JCLI-3243.1.

  • Stephens, G. L., D. O’Brien, P. J. Webster, P. Pilewski, S. Kato, and J. L. Li, 2015: The albedo of Earth. Rev. Geophys., 53, 141163, https://doi.org/10.1002/2014RG000449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., J. Corbett, Z. Eitzen, and L. Liang, 2015a: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech., 8, 611632, https://doi.org/10.5194/amt-8-611-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., J. Corbett, Z. Eitzen, and L. Liang, 2015b: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Validation. Atmos. Meas. Tech., 8, 32973313, https://doi.org/10.5194/amt-8-3297-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W. B., N. G. Loeb, R. Davies, K. Loukachine, and W. F. Miller, 2006: Comparison of MISR and CERES top-of-atmosphere albedo. Geophys. Res. Lett., 33, L23810, https://doi.org/10.1029/2006GL027958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27, 113126, https://doi.org/10.1007/s00382-006-0127-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., J. E. Pinzon, M. E. Brown, D. A. Slayback, E. W. Pak, R. Mahoney, E. F. Vermote, and N. El Saleous, 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44854498, https://doi.org/10.1080/01431160500168686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2013: The observed hemispheric symmetry in reflected shortwave irradiance. J. Climate, 26, 468477, https://doi.org/10.1175/JCLI-D-12-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. S., A. P. Trishchenko, K. V. Khlopenkov, and A. Davidson, 2006: Comparison of International Panel on Climate Change Fourth Assessment Report climate model simulations of surface albedo with satellite products over northern latitudes. J. Geophys. Res., 111, D21108, https://doi.org/10.1029/2005JD006728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. Louis Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., T. Wong, N. Loeb, P. Minnis, K. Priestley, and R. Kandel, 2005: Changes in Earth’s albedo measured by satellite. Science, 308, 825, https://doi.org/10.1126/science.1106484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., 2005: Solar radiation budgets in atmospheric model intercomparisons from a surface perspective. Geophys. Res. Lett., 32, L07704, https://doi.org/10.1029/2005GL022421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, H., and Coauthors, 2017: Automated detection of cloud and aerosol features with SACOL micro-pulse lidar in northwest China. Opt. Express, 25, 30 73230 753, https://doi.org/10.1364/OE.25.030732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Koike, H. Fujii, T. Tamura, X. Xu, L. Bian, and M. Zhou, 2004: The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau: Observations and simulations. J. Meteor. Soc. Japan, 82, 17771792, https://doi.org/10.2151/jmsj.82.1777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, N., and J. Yoon, 2009: Expansion of the world’s deserts due to vegetation-albedo feedback under global warming. Geophys. Res. Lett., 36, L17401, https://doi.org/10.1029/2009GL039699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, Y. Z., and R. Davies, 2016: Intercalibration of CERES, MODIS, and MISR reflected solar radiation and its application to albedo trends. J. Geophys. Res. Atmos., 121, 62736283, https://doi.org/10.1002/2016JD025073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., and T. J. Garrett, 2015: Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett., 42, 557564, https://doi.org/10.1002/2014GL062015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2634 1551 486
PDF Downloads 895 138 23