Assessing Extratropical Influence on Observed El Niño–Southern Oscillation Events Using Regional Coupled Data Assimilation

Feiyu Lu Nelson Institute Center for Climatic Research, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Feiyu Lu in
Current site
Google Scholar
PubMed
Close
and
Zhengyu Liu Atmospheric Science Program, Department of Geography, The Ohio State University, Columbus, Ohio

Search for other papers by Zhengyu Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The extratropical influence on the observed events of El Niño–Southern Oscillation (ENSO) variability from 1948 to 2015 is assessed by constraining the extratropical atmospheric variability in a coupled general circulation model (CGCM) using the regional coupled data assimilation (RCDA) method. The ensemble-mean ENSO response to extratropical atmospheric forcing, which is systematically and quantitatively studied through a series of RCDA experiments, indicates robust extratropical influence on some observed ENSO events. Furthermore, an event-by-event quantitative analysis shows significant differences of the extratropical influence among the observed ENSO events, both in its own strength and in its relation to tropical precursors such as the equatorial Pacific heat content anomaly. This study provides the first dynamic quantitative assessment of the extratropical influence on observed ENSO variability on an event-by-event basis.

Current affiliation: Program in Atmospheric and Oceanic Sciences, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Feiyu Lu, feiyu.lu@noaa.gov

Abstract

The extratropical influence on the observed events of El Niño–Southern Oscillation (ENSO) variability from 1948 to 2015 is assessed by constraining the extratropical atmospheric variability in a coupled general circulation model (CGCM) using the regional coupled data assimilation (RCDA) method. The ensemble-mean ENSO response to extratropical atmospheric forcing, which is systematically and quantitatively studied through a series of RCDA experiments, indicates robust extratropical influence on some observed ENSO events. Furthermore, an event-by-event quantitative analysis shows significant differences of the extratropical influence among the observed ENSO events, both in its own strength and in its relation to tropical precursors such as the equatorial Pacific heat content anomaly. This study provides the first dynamic quantitative assessment of the extratropical influence on observed ENSO variability on an event-by-event basis.

Current affiliation: Program in Atmospheric and Oceanic Sciences, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Feiyu Lu, feiyu.lu@noaa.gov
Save
  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., 2007: On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J. Climate, 20, 15931599, https://doi.org/10.1175/JCLI4075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., R. C. Perez, and A. Karspeck, 2013: Triggering of El Niño onset through trade wind–induced charging of the equatorial Pacific. Geophys. Res. Lett., 40, 12121216, https://doi.org/10.1002/grl.50200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129,2884:AEAKFF.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087, https://doi.org/10.1126/science.228.4703.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and P. D. Sardeshmukh, 2015: Optimal precursors of different types of ENSO events. Geophys. Res. Lett., 42, 99529960, https://doi.org/10.1002/2015GL066171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, Y. Tseng, C. Sun, and F. Xie, 2017: Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events. J. Geophys. Res. Atmos., 122, 279298, https://doi.org/10.1002/2016JD025502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, R., 1997: Low frequency variability in a simulated atmosphere ocean system. Ph.D. thesis, University of Wisconsin–Madison, 159 pp.

  • Jacob, R., C. Schafer, I. Foster, and M. Tobis, 2001: Computational design and performance of the Fast Ocean Atmosphere Model, version one. Computational Science—ICCS 2001, V. N. Alexandrov et al., Eds., Lecture Notes in Computer Science, Vol. 2073, Springer, 175–184, https://doi.org/10.1007/3-540-45545-0_26.

    • Crossref
    • Export Citation
  • Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett., 29, https//doi.org/10.1029/2002GL014834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2013: The Pacific Meridional Mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett., 40, 31893194, https://doi.org/10.1002/grl.50571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2014: The Pacific meridional mode as an ENSO precursor and predictor in the North American Multimodel Ensemble. J. Climate, 27, 70187032, https://doi.org/10.1175/JCLI-D-14-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2015: An alternate approach to ensemble ENSO forecast spread: Application to the 2014 forecast. Geophys. Res. Lett., 42, 94119415, https://doi.org/10.1002/2015GL066173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., and M. J. McPhaden, 2015: The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys. Res. Lett., 42, 50345041, https://doi.org/10.1002/2015GL064309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., F. Lu, Z. Liu, Y. Liu, and S. Zhang, 2016: Assimilating atmosphere reanalysis in coupled data assimilation. J. Meteor. Res., 30, 572583, https://doi.org/10.1007/s13351-016-6014-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J. Climate, 28, 931951, https://doi.org/10.1175/JCLI-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and S.-P. Xie, 1994: Equatorward propagation of coupled air–sea disturbances with application to the annual cycle of the eastern tropical Pacific. J. Atmos. Sci., 51, 38073822, https://doi.org/10.1175/1520-0469(1994)051<3807:EPOCAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, F., Z. Liu, S. Zhang, Y. Liu, and R. Jacob, 2015: Strongly coupled data assimilation using leading averaged coupled covariance (LACC). Part II: CGCM experiments. Mon. Wea. Rev., 143, 46454659, https://doi.org/10.1175/MWR-D-15-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, F., Z. Liu, Y. Liu, S. Zhang, and R. Jacob, 2017a: Understanding the control of extratropical atmospheric variability on ENSO using a coupled data assimilation approach. Climate Dyn., 48, 31393160, https://doi.org/10.1007/s00382-016-3256-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, F., S. Liu, S. Zhang, and R. Jacob, 2017b: Assessing extratropical impact on the tropical bias in coupled climate model with regional coupled data assimilation. Geophys. Res. Lett., 44, 33843392, https://doi.org/10.1002/2017GL072890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., and M. J. McPhaden, 2014: Assessing the twenty-first-century shift in ENSO variability in terms of the Bjerknes stability index. J. Climate, 27, 25772587, https://doi.org/10.1175/JCLI-D-13-00438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pegion, K., and M. A. Alexander, 2013: The seasonal footprinting mechanism in CFSv2: Simulation and impact on ENSO prediction. Climate Dyn., 41, 16711683, https://doi.org/10.1007/s00382-013-1887-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, https://doi.org/10.1029/2001GL013435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003a: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16, 26532667, https://doi.org/10.1175/1520-0442(2003)016<2653:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003b: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., M. A. Alexander, and A. Fontaine, 2009: Midlatitude excitation of tropical variability in the Pacific: The role of thermodynamic coupling and seasonality. J. Climate, 22, 518534, https://doi.org/10.1175/2008JCLI2220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., A. C. Clement, and P. Di Nezio, 2014: The South Pacific meridional mode: A mechanism for ENSO-like variability. J. Climate, 27, 769783, https://doi.org/10.1175/JCLI-D-13-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., P. Chang, and L. Ji, 2009: Linking the Pacific meridional mode to ENSO: Coupled model analysis. J. Climate, 22, 34883505, https://doi.org/10.1175/2008JCLI2473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., and A. Rosati, 2010: An inflated ensemble filter for ocean data assimilation with a biased coupled GCM. Mon. Wea. Rev., 138, 39053931, https://doi.org/10.1175/2010MWR3326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. T. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, https://doi.org/10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 272 78 5
PDF Downloads 205 50 4