Impact of Atmospheric Circulation on Temperature, Clouds, and Radiation at Summit Station, Greenland, with Self-Organizing Maps

Michael R. Gallagher Cooperative Institute for Research in Environmental Science, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Michael R. Gallagher in
Current site
Google Scholar
PubMed
Close
,
Matthew D. Shupe Cooperative Institute for Research in Environmental Science, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Matthew D. Shupe in
Current site
Google Scholar
PubMed
Close
, and
Nathaniel B. Miller Cooperative Institute for Research in Environmental Science, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Nathaniel B. Miller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Greenland Ice Sheet (GrIS) plays a crucial role in the Arctic climate, and atmospheric conditions are the primary modifier of mass balance. This analysis establishes the relationship between large-scale atmospheric circulation and principal determinants of GrIS mass balance: moisture, cloud properties, radiative forcing, and temperature. Using self-organizing maps (SOMs), observations from the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit (ICECAPS) project are categorized by daily sea level pressure (SLP) gradient. The results describe in detail how southerly, northerly, and zonal circulation regimes impact observations at Summit Station, Greenland. This southerly regime is linked to large anomalous increases in low-level liquid cloud formation, cloud radiative forcing (CRF), and surface warming at Summit Station. An individual southerly pattern relates to the largest positive anomalies, with the most extreme 25% of cases leading to CRF anomalies above 21 W m−2 and temperature anomalies beyond 8.5°C. Finally, the July 2012 extreme melt event is analyzed, showing that the prolonged ice sheet warming was related to persistence of these southerly circulation patterns, causing an unusually extended period of anomalous CRF and temperature. These results demonstrate a novel methodology, connecting daily atmospheric circulation to a relatively brief record of observations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael R. Gallagher, michael.ray.gallagher@gmail.com

Abstract

The Greenland Ice Sheet (GrIS) plays a crucial role in the Arctic climate, and atmospheric conditions are the primary modifier of mass balance. This analysis establishes the relationship between large-scale atmospheric circulation and principal determinants of GrIS mass balance: moisture, cloud properties, radiative forcing, and temperature. Using self-organizing maps (SOMs), observations from the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit (ICECAPS) project are categorized by daily sea level pressure (SLP) gradient. The results describe in detail how southerly, northerly, and zonal circulation regimes impact observations at Summit Station, Greenland. This southerly regime is linked to large anomalous increases in low-level liquid cloud formation, cloud radiative forcing (CRF), and surface warming at Summit Station. An individual southerly pattern relates to the largest positive anomalies, with the most extreme 25% of cases leading to CRF anomalies above 21 W m−2 and temperature anomalies beyond 8.5°C. Finally, the July 2012 extreme melt event is analyzed, showing that the prolonged ice sheet warming was related to persistence of these southerly circulation patterns, causing an unusually extended period of anomalous CRF and temperature. These results demonstrate a novel methodology, connecting daily atmospheric circulation to a relatively brief record of observations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael R. Gallagher, michael.ray.gallagher@gmail.com
Save
  • Bennartz, R., and Coauthors, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 8386, https://doi.org/10.1038/nature12002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloomfield, P., 2000: Fourier Analysis of Time Series: An Introduction. Wiley and Sons, 261 pp.

    • Crossref
    • Export Citation
  • Chen, L., X. Fettweis, E. M. Knudsen, and O. M. Johannessen, 2016: Impact of cyclonic and anticyclonic activity on Greenland Ice Sheet surface mass balance variation during 1980–2013. Int. J. Climatol., 36, 34233433, https://doi.org/10.1002/joc.4565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J., and Coauthors, 2001: Changes in sea level. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 639–693, https://www.ipcc.ch/ipccreports/tar/wg1/pdf/TAR-11.PDF.

  • Comiso, J. C., and D. K. Hall, 2014: Climate trends in the Arctic as observed from space. Wiley Interdiscip. Rev.: Climate Change, 5, 389409, https://doi.org/10.1002/wcc.277.

    • Search Google Scholar
    • Export Citation
  • Crane, R., and B. Hewitson, 2003: Clustering and upscaling of station precipitation records to regional patterns using self-organizing maps (SOMs). Climate Res., 25, 95107, https://doi.org/10.3354/cr025095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boer, G., and Coauthors, 2014: Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of reanalyses and global climate models. Atmos. Chem. Phys., 14, 427445, https://doi.org/10.5194/acp-14-427-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enderlin, E. M., I. M. Howat, S. Jeong, M. J. Noh, J. H. van Angelen, and M. R. van den Broeke, 2014: An improved mass budget for the Greenland Ice Sheet. Geophys. Res. Lett., 41, 866872, https://doi.org/10.1002/2013GL059010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., J. C. Comiso, N. E. DiGirolamo, C. A. Shuman, J. E. Box, and L. S. Koenig, 2013: Variability in the surface temperature and melt extent of the Greenland Ice Sheet from MODIS. Geophys. Res. Lett., 40, 21142120, https://doi.org/10.1002/grl.50240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2008: Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. J. Climate, 21, 331341, https://doi.org/10.1175/2007JCLI1964.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland Ice Sheet surface melt in summer 2012. Int. J. Climatol., 34, 10221037, https://doi.org/10.1002/joc.3743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22, 1326, https://doi.org/10.3354/cr022013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huth, R., C. Beck, A. Philipp, M. Demuzere, Z. Ustrnul, M. Cahynová, J. Kyselý, and O. E. Tveito, 2008: Classifications of atmospheric circulation patterns. Ann. N.Y. Acad. Sci., 1146, 105152, https://doi.org/10.1196/annals.1446.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2013: Essentials of the self-organizing map. Neural Networks, 37, 5265, https://doi.org/10.1016/j.neunet.2012.09.018.

  • Kohonen, T., J. Hynninen, J. Kangas, and J. Laaksonen, 1996: SOM_PAK: The Self-Organizing Map Program Package. Helsinki University of Technology Rep. A31, 27 pp.

  • Kohonen, T., M. R. Schroeder, and T. S. Huang, Eds., 2001: Self-Organizing Maps. 3rd ed. Springer, 501 pp.

    • Crossref
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattingly, K. S., C. A. Ramseyer, J. J. Rosen, T. L. Mote, and R. Muthyala, 2016: Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps. Geophys. Res. Lett., 43, 92509258, https://doi.org/10.1002/2016GL070424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., T. L. Mote, and G. E. Liston, 2011: Greenland Ice Sheet surface melt extent and trends: 1960–2010. J. Glaciol., 57, 621628, https://doi.org/10.3189/002214311797409712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N. B., M. D. Shupe, C. J. Cox, V. P. Walden, D. D. Turner, and K. Steffen, 2015: Cloud radiative forcing at Summit, Greenland. J. Climate, 28, 62676280, https://doi.org/10.1175/JCLI-D-15-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N. B., M. D. Shupe, C. J. Cox, D. Noone, P. O. G. Persson, and K. Steffen, 2017: Surface energy budget responses to radiative forcing at Summit, Greenland. Cryosphere, 11, 497516, https://doi.org/10.5194/tc-11-497-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moritz, R. E., C. M. Bitz, and E. J. Steig, 2002: Dynamics of recent climate change in the Arctic. Science, 297, 14971502, https://doi.org/10.1126/science.1076522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neff, W., G. P. Compo, F. Martin Ralph, and M. D. Shupe, 2014: Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889. J. Geophys. Res. Atmos., 119, 65206536, https://doi.org/10.1002/2014JD021470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nghiem, S. V., and Coauthors, 2012: The extreme melt across the Greenland Ice Sheet in 2012. Geophys. Res. Lett., 39, L20502, https://doi.org/10.1029/2012GL053611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, https://doi.org/10.1126/science.243.4887.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hewitson, 2005a: Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr., 29, 188212, https://doi.org/10.1080/789610199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., B. C. Hewitson, and R. B. Alley, 2005b: Towards ice-core-based synoptic reconstructions of west Antarctic climate with artificial neural networks. Int. J. Climatol., 25, 581610, https://doi.org/10.1002/joc.1143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hewitson, 2007: North Atlantic climate variability from a self-organizing map perspective. J. Geophys. Res., 112, D02104, https://doi.org/10.1029/2006JD007460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter-Menge, J., J. E. Overland, and J. T. Mathis, 2016: Arctic Report Card 2016: Persistent warming trend and loss of sea ice are triggering extensive Arctic changes. NOAA, http://www.arctic.noaa.gov/Report-Card.

  • Schneider, S., 1972: Cloudiness as a global climatic feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci., 29, 14131422, https://doi.org/10.1175/1520-0469(1972)029<1413:CAAGCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuenemann, K. C., and J. J. Cassano, 2009: Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 1. Evaluation of late 20th century simulations from IPCC models. J. Geophys. Res., 114, D20113, https://doi.org/10.1029/2009JD011705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuenemann, K. C., and J. J. Cassano, 2010: Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 2. Analysis of 21st century atmospheric changes using self-organizing maps. J. Geophys. Res., 115, D05108, https://doi.org/10.1029/2009JD011706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. E. Box, R. G. Barry, and J. E. Walsh, 1993: Characteristics of Arctic synoptic activity, 1952–1989. Meteor. Atmos. Phys., 51, 147164, https://doi.org/10.1007/BF01030491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10, 453464, https://doi.org/10.1175/1520-0442(1997)010<0453:ILCACF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. R. Key, J. E. Box, J. A. Maslanik, and K. Steffen, 1998: A new monthly climatology of global radiation for the Arctic and comparisons with NCEP–NCAR reanalysis and ISCCP-C2 fields. J. Climate, 11, 121136, https://doi.org/10.1175/1520-0442(1998)011<0121:ANMCOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and C. C. Lee, 2011: The self-organizing map in synoptic climatological research. Prog. Phys. Geogr., 35, 109119, https://doi.org/10.1177/0309133310397582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, https://doi.org/10.1029/2007GL031008.

  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711, https://doi.org/10.1175/JAS3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2013: High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bull. Amer. Meteor. Soc., 94, 169186, https://doi.org/10.1175/BAMS-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, and N. B. Miller, 2017: Cloud–atmospheric boundary layer–surface interactions on the Greenland Ice Sheet during the July 2012 extreme melt event. J. Climate, 30, 32373252, https://doi.org/10.1175/JCLI-D-16-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M., P. Smeets, and J. Ettema, 2009: Surface layer climate and turbulent exchange in the ablation zone of the west Greenland Ice Sheet. Int. J. Climatol., 29, 23092323, https://doi.org/10.1002/joc.1815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Wal, R. S. W., W. Boot, M. R. van den Broeke, C. J. P. P. Smeets, C. H. Reijmer, J. J. A. Donker, and J. Oerlemans, 2008: Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science, 321, 111113, https://doi.org/10.1126/science.1158540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and W. L. Chapman, 1998: Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses. J. Climate, 11, 30303045, https://doi.org/10.1175/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., W. L. Chapman, and D. H. Portis, 2009: Arctic cloud fraction and radiative fluxes in atmospheric reanalyses. J. Climate, 22, 23162334, https://doi.org/10.1175/2008JCLI2213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zib, B. J., X. Dong, B. Xi, and A. Kennedy, 2012:Evaluation and intercomparison of cloud fraction and radiative fluxes in recent reanalyses over the Arctic using BSRN surface observations. J. Climate, 25, 22912305, https://doi.org/10.1175/JCLI-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwally, H., W. Abdalati, T. Herring, K. Larson, J. Saba, and K. Steffen, 2002: Surface melt-induced acceleration of Greenland Ice-Sheet flow. Science, 297, 218222, https://doi.org/10.1126/science.1072708.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 776 202 10
PDF Downloads 563 120 4