Intraseasonal Effects of El Niño–Southern Oscillation on North Atlantic Climate

Blanca Ayarzagüena Department of Mathematics, University of Exeter, Exeter, United Kingdom, and Departamento de Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, and Instituto de Geociencias, Consejo Superior de Investigaciones Científicas–Universidad Complutense de Madrid (CSIC-UCM), Madrid, Spain

Search for other papers by Blanca Ayarzagüena in
Current site
Google Scholar
PubMed
Close
,
Sarah Ineson Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Sarah Ineson in
Current site
Google Scholar
PubMed
Close
,
Nick J. Dunstone Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Nick J. Dunstone in
Current site
Google Scholar
PubMed
Close
,
Mark P. Baldwin Department of Mathematics, University of Exeter, United Kingdom

Search for other papers by Mark P. Baldwin in
Current site
Google Scholar
PubMed
Close
, and
Adam A. Scaife Department of Mathematics, University of Exeter, and Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Adam A. Scaife in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

It is well established that El Niño–Southern Oscillation (ENSO) impacts the North Atlantic–European (NAE) climate, with the strongest influence in winter. In late winter, the ENSO signal travels via both tropospheric and stratospheric pathways to the NAE sector and often projects onto the North Atlantic Oscillation. However, this signal does not strengthen gradually during winter, and some studies have suggested that the ENSO signal is different between early and late winter and that the teleconnections involved in the early winter subperiod are not well understood. In this study, we investigate the ENSO teleconnection to NAE in early winter (November–December) and characterize the possible mechanisms involved in that teleconnection. To do so, observations, reanalysis data and the output of different types of model simulations have been used. We show that the intraseasonal winter shift of the NAE response to ENSO is detected for both El Niño and La Niña and is significant in both observations and initialized predictions, but it is not reproduced by free-running Coupled Model Intercomparison Project phase 5 (CMIP5) models. The teleconnection is established through the troposphere in early winter and is related to ENSO effects over the Gulf of Mexico and Caribbean Sea that appear in rainfall and reach the NAE region. CMIP5 model biases in equatorial Pacific ENSO sea surface temperature patterns and strength appear to explain the lack of signal in the Gulf of Mexico and Caribbean Sea and, hence, their inability to reproduce the intraseasonal shift of the ENSO signal over Europe.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Blanca Ayarzagüena, bayarzag@ucm.es

Abstract

It is well established that El Niño–Southern Oscillation (ENSO) impacts the North Atlantic–European (NAE) climate, with the strongest influence in winter. In late winter, the ENSO signal travels via both tropospheric and stratospheric pathways to the NAE sector and often projects onto the North Atlantic Oscillation. However, this signal does not strengthen gradually during winter, and some studies have suggested that the ENSO signal is different between early and late winter and that the teleconnections involved in the early winter subperiod are not well understood. In this study, we investigate the ENSO teleconnection to NAE in early winter (November–December) and characterize the possible mechanisms involved in that teleconnection. To do so, observations, reanalysis data and the output of different types of model simulations have been used. We show that the intraseasonal winter shift of the NAE response to ENSO is detected for both El Niño and La Niña and is significant in both observations and initialized predictions, but it is not reproduced by free-running Coupled Model Intercomparison Project phase 5 (CMIP5) models. The teleconnection is established through the troposphere in early winter and is related to ENSO effects over the Gulf of Mexico and Caribbean Sea that appear in rainfall and reach the NAE region. CMIP5 model biases in equatorial Pacific ENSO sea surface temperature patterns and strength appear to explain the lack of signal in the Gulf of Mexico and Caribbean Sea and, hence, their inability to reproduce the intraseasonal shift of the ENSO signal over Europe.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Blanca Ayarzagüena, bayarzag@ucm.es
Save
  • Alexander, M., and J. Scott, 2002: The influence of ENSO on air-sea interaction in the Atlantic. Geophys. Res. Lett., 29, 1701, https://doi.org/10.1029/2001GL014347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R., and T. J. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, https://doi.org/10.1175/JCLI3937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayarzagüena, B., J. López-Parages, M. Iza, N. Calvo, and B. Rodríguez-Fonseca, 2018: Stratospheric role in interdecadal changes of El Niño impacts over Europe. Climate Dyn., https://doi.org/10.1007/s00382-018-4186-3, in press.

    • Search Google Scholar
    • Export Citation
  • Bell, C. J., L. J. Gray, A. J. Charlton-Perez, M. M. Joshi, and A. A. Scaife, 2009: Stratospheric communication of El Niño teleconnections to European winter. J. Climate, 22, 40834096, https://doi.org/10.1175/2009JCLI2717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bladé, I., M. Newman, M. A. Alexander, and J. D. Scott, 2008: The late fall extratropical response to ENSO: Sensitivity to coupling and convection in the tropical west Pacific. J. Climate, 21, 61016118, https://doi.org/10.1175/2008JCLI1612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., 2007: Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45, RG3003, https://doi.org/10.1029/2006RG000199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., E. Xoplaki, C. Casty, A. Pauling, and J. Luterbacher, 2007: ENSO influence on Europe during the last centuries. Climate Dyn., 28, 181197, https://doi.org/10.1007/s00382-006-0175-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., L. M. Polvani, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño-Southern oscillation teleconnections. Environ. Res. Lett., 9, 024014, https://doi.org/10.1088/1748-9326/9/2/024014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and E. Manzini, 2009: Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Climate, 22, 12231238, https://doi.org/10.1175/2008JCLI2549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davey, M. K., A. Brookshaw, and S. Ineson, 2014: The probability of the impact of ENSO on precipitation and near-surface temperature. Climate Risk Manage., 1, 524, https://doi.org/10.1016/j.crm.2013.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, K. A. McKinnon, and A. S. Phillips, 2017: The Northern Hemisphere extratropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J. Climate, 30, 50595082, https://doi.org/10.1175/JCLI-D-16-0844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunstone, N., D. Smith, A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skillful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci., 9, 809814, https://doi.org/10.1038/ngeo2824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fereday, D. R., J. R. Knight, A. A. Scaife, C. K. Folland, and A. Philipp, 2008: Cluster analysis of North Atlantic–European circulation types and links with tropical Pacific sea surface temperatures. J. Climate, 21, 36873703, https://doi.org/10.1175/2007JCLI1875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogli, P. G., and Coauthors, 2009: INGV-CMCC Carbon (ICC): A carbon cycle Earth system model. CMCC Research Paper, Bologna, Italy, 31 pp., https://www.cmcc.it/publications/rp0061-ingv-cmcc-carbon-icc-a-carbon-cycle-earth-system-model.

    • Crossref
    • Export Citation
  • García-Herrera, R., N. Calvo, R. R. García, and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res., 111, D06101, https://doi.org/10.1029/2005JD006061.

    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., C. Cassou, H. Douville, A. Giannini, and F. J. Doblas-Reyes, 2017: Revisiting the ENSO-teleconnection to the tropical North Atlantic. J. Climate, 30, 69456957, https://doi.org/10.1175/JCLI-D-16-0641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, https://doi.org/10.1002/jame.20038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., M.-K. Sung, S.-I. An, S. D. Schubert, and J.-S. Kug, 2014: Role of Tropical Atlantic SST variability as a modulator of El Niño teleconnections. Asia-Pac. J. Atmos. Sci., 50, 247261, https://doi.org/10.1007/s13143-014-0013-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of the teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, https://doi.org/10.1038/ngeo381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iza, M., N. Calvo, and E. Manzini, 2016: The stratospheric pathway of La Niña. J. Climate, 29, 88998914, https://doi.org/10.1175/JCLI-D-16-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Japan Meteorological Agency, 2013: JRA-55: Japanese 55-year reanalysis, monthly means and variances. Research Data Archive at the National Center for Atmospheric Research, accessed 28 June 2017, https://doi.org/10.5065/D60G3H5B.

    • Crossref
    • Export Citation
  • Jiménez-Esteve, B., and D. I. V. Domeisen, 2018: The tropospheric pathway of the ENSO–North Atlantic teleconnection. J. Climate, 31, 45634584, https://doi.org/10.1175/JCLI-D-17-0716.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. P., I. Herceg-Bulić, F. Kucharski, and N. Keenlyside, 2018a: Interannual tropical Pacific sea surface temperature anomalies teleconnection to Northern Hemisphere atmosphere in November. Climate Dyn., 50, 18811899, https://doi.org/10.1007/s00382-017-3727-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. P., I. Herceg-Bulić, I. Bladé, J. García-Serrano, N. Keenlyside, F. Kucharski, C. Li, and S. Sobolowski, 2018b: Importance of late fall ENSO teleconnection in the Euro-Atlantic sector. Bull. Amer. Meteor. Soc., 99, 13371343, https://doi.org/10.1175/BAMS-D-17-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Derome, and G. Brunet, 2007: The nonlinear transient atmospheric response to tropical forcing. J. Climate, 20, 56425665, https://doi.org/10.1175/2007JCLI1383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., Q. Fu, and D. L. Hartmann, 2012: Impact of tropical SST on stratospheric planetary waves in the Southern Hemisphere. J. Climate, 25, 50305046, https://doi.org/10.1175/JCLI-D-11-00378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, https://doi.org/10.1002/qj.2396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the Northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881, https://doi.org/10.1175/JCLI3826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzini, E., C. Cagnazzo, P. G. Fogli, A. Bellucci, and W. A. Muller, 2012: Stratosphere-troposphere coupling at inter-decadal time scales: Implications for the North Atlantic Ocean. Geophys. Res. Lett., 39, L05801, https://doi.org/10.1029/2011GL050771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Met Office Hadley Center, 2003: Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST). Met Office Hadley Centre for Climate Change Host, accessed 4 October 2016, https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html.

  • Met Office Hadley Center, 2005: Hadley Centre Sea Level Pressure data set (HadSLP2). Met Office Hadley Centre for Climate Change Host, accessed 4 October 2016, https://www.metoffice.gov.uk/hadobs/hadslp2/data/download.html.

  • Moron, V., and I. Gouirand, 2003: Seasonal modulation of the ENSO relationship with sea level pressure anomalies over the North Atlantic in October–March 1873–1996. Int. J. Climatol., 23, 143155, https://doi.org/10.1002/joc.868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. Springer, 520 pp.

  • Polvani, L. M., L. Sun, A. H. Butler, J. H. Richter, and C. Deser, 2017: Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia. J. Climate, 30, 19591969, https://doi.org/10.1175/JCLI-D-16-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, https://doi.org/10.1002/2014GL059637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 111, https://doi.org/10.1002/qj.2910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and A. A. Scaife, 2006: The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett., 33, L24704, https://doi.org/10.1029/2006GL027881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vichi, M., E. Manzini, P. Fogli, A. Alessandri, L. Patara, E. Scoccimarro, S. Masina, and A. Navarra, 2011: Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario. Climate Dyn., 37, 19291947, https://doi.org/10.1007/s00382-011-1079-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E., N. Dianskii, and A. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv., Atmos. Ocean. Phys., 46, 414431, https://doi.org/10.1134/S000143381004002X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2002: Atlantic climate variability and its associated atmospheric circulations cells. J. Climate, 15, 15161536, https://doi.org/10.1175/1520-0442(2002)015<1516:ACVAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and P. C. Fiedler, 2006: ENSO variability and the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 239266, https://doi.org/10.1016/j.pocean.2006.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, https://doi.org/10.5194/gmd-4-845-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 15091524, https://doi.org/10.5194/gmd-8-1509-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., 2011: Meteorological Research Institute Earth System Model version 1 (MRI-ESM1): Model description. MRI. Tech. Rep. 64, 88 pp.

  • Zubiaurre, I., and N. Calvo, 2012: The El Niño-Southern Oscillation (ENSO) Modoki signal in the stratosphere. J. Geophys. Res., 117, D04104, https://doi.org/10.1029/2011JD016690.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2379 791 163
PDF Downloads 2197 563 66