Impact of the Atlantic Meridional Mode on Gulf Stream North Wall Position

Sultan Hameed School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Sultan Hameed in
Current site
Google Scholar
PubMed
Close
,
Christopher L. P. Wolfe School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Christopher L. P. Wolfe in
Current site
Google Scholar
PubMed
Close
, and
Lequan Chi School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Lequan Chi in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The path of the Gulf Stream as it leaves the continental shelf near Cape Hatteras is marked by a sharp gradient in ocean temperature known as the North Wall. Previous work in the literature has considered processes related to the North Atlantic Oscillation (NAO) in triggering latitudinal displacements of the North Wall position. This paper presents evidence that the Atlantic meridional mode (AMM) also impacts interannual variations of the North Wall position. The AMM signal from the tropics propagates to the Gulf Stream near the 200-m depth, and there are two time scales for this interaction. Anomalous Ekman suction induced by AMM cools the tropical Atlantic. The cold water in the Caribbean Sea is entrained into the currents feeding the Gulf Stream, and this cooling signal reaches the North Wall within a year. A second mechanism involves cold anomalies in the western tropical Atlantic, which initially propagate westward as baroclinic planetary waves, reaching the Gulf Stream and resulting in a southward shift in the North Wall position after a delay of about one year. In an analysis for the period 1961–2015, AMM’s signal dominates North Wall fluctuations in the upper 300 m, while NAO is the major influence below ~500 m; the influence of both the teleconnections is seen between 300 and 500 m. The relationship between the Atlantic meridional overturning circulation (AMOC) and the North Wall is investigated for the 2005–15 period and found to be statistically significant only at the sea surface in one of the three North Wall indices used.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0098.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sultan Hameed, sultan.hameed@stonybrook.edu

Abstract

The path of the Gulf Stream as it leaves the continental shelf near Cape Hatteras is marked by a sharp gradient in ocean temperature known as the North Wall. Previous work in the literature has considered processes related to the North Atlantic Oscillation (NAO) in triggering latitudinal displacements of the North Wall position. This paper presents evidence that the Atlantic meridional mode (AMM) also impacts interannual variations of the North Wall position. The AMM signal from the tropics propagates to the Gulf Stream near the 200-m depth, and there are two time scales for this interaction. Anomalous Ekman suction induced by AMM cools the tropical Atlantic. The cold water in the Caribbean Sea is entrained into the currents feeding the Gulf Stream, and this cooling signal reaches the North Wall within a year. A second mechanism involves cold anomalies in the western tropical Atlantic, which initially propagate westward as baroclinic planetary waves, reaching the Gulf Stream and resulting in a southward shift in the North Wall position after a delay of about one year. In an analysis for the period 1961–2015, AMM’s signal dominates North Wall fluctuations in the upper 300 m, while NAO is the major influence below ~500 m; the influence of both the teleconnections is seen between 300 and 500 m. The relationship between the Atlantic meridional overturning circulation (AMOC) and the North Wall is investigated for the 2005–15 period and found to be statistically significant only at the sea surface in one of the three North Wall indices used.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0098.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sultan Hameed, sultan.hameed@stonybrook.edu

Supplementary Materials

    • Supplemental Materials (ZIP 1.65 MB)
Save
  • Amaya, D. J., M. J. DeFlorio, A. J. Miller, and S.-P. Xie, 2017: WES feedback and the Atlantic meridional mode: Observations and CMIP5 comparisons. Climate Dyn., 49, 16651679, https://doi.org/10.1007/s00382-016-3411-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borkman, D. G., and T. J. Smayda, 2009: Gulf Stream position and winter NAO as drivers of long-term variations in the bloom phenology of the diatom Skeletonema costatum “species-complex” in Narragansett Bay, RI, USA. J. Plankton Res., 31, 14071425, https://doi.org/10.1093/plankt/fbp072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 208 pp.

  • Bryan, F. O., M. W. Hecht, and R. D. Smith, 2007: Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system. Ocean Modell., 16, 141159, https://doi.org/10.1016/j.ocemod.2006.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and D. P. Marshall, 2008: Gulf Stream separation in numerical ocean models. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 39–61, https://doi.org/10.1029/177GM05.

    • Crossref
    • Export Citation
  • Chaudhuri, A. H., A. Gangopadhyay, and J. J. Bisagni, 2011: Response of the Gulf Stream transport to characteristic high and low phases of the North Atlantic Oscillation. Ocean Modell., 39, 220232, https://doi.org/10.1016/j.ocemod.2011.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cipollini, P., D. Cromwell, P. G. Challenor, and S. Raffaglio, 2001: Rossby waves detected in global ocean color data. Geophys. Res. Lett., 28, 323326, https://doi.org/10.1029/1999GL011231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Marine Environmental Monitoring Service, 2017: Global ARMOR3. Copernicus Marine Environmental Monitoring Service, accessed 6 June 2018, http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=MULTIOBS_GLO_PHY_REP_015_002.

  • Cornillon, P., and R. Watts, 1987: Satellite thermal infrared and inverted echo sounder determinations of the Gulf Stream northern edge. J. Atmos. Oceanic Technol., 4, 712723, https://doi.org/10.1175/1520-0426(1987)004<0712:STIAIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drinkwater, K. F., R. A. Myers, R. G. Pettipas, and T. L. Wright, 1994: Climatic data for the northwest Atlantic: The position of the shelf/slope front and the northern boundary of the Gulf Stream between 50°W and 75°W, 1973-1992. Canadian Hydrography and Ocean Sciences Data Rep. 125, 103 pp.

  • Ezer, T., 1999: Decadal variabilities of the upper layers of the subtropical North Atlantic: An ocean model study. J. Phys. Oceanogr., 29, 31113124, https://doi.org/10.1175/1520-0485(1999)029<3111:DVOTUL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2015: Detecting changes in the transport of the Gulf Stream and the Atlantic overturning circulation from coastal sea level data: The extreme decline in 2009–2010 and estimated variations for 1935–2012. Global Planet. Change, 129, 2336, https://doi.org/10.1016/j.gloplacha.2015.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., L. P. Atkinson, W. B. Corlett, and J. L. Blanco, 2013: Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. J. Geophys. Res., 118, 685697, https://doi.org/10.1002/jgrc.20091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., S. M. Griffies, A. J. G. Nurser, and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156, https://doi.org/10.1016/j.ocemod.2010.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., G. D. Coëtlogon, T. M. Joyce, and S. Dong, 2001: Gulf Stream variability and ocean–atmosphere interactions. J. Phys. Oceanogr., 31, 35163529, https://doi.org/10.1175/1520-0485(2002)031<3516:GSVAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuglister, F. C., 1955: Alternative analyses of current surveys. Deep-Sea Res., 2, 213229, https://doi.org/10.1016/0146-6313(55)90026-5.

    • Search Google Scholar
    • Export Citation
  • Gangopadhyay, A., P. Cornillon, and D. R. Watts, 1992: A test of the Parsons–Veronis hypothesis on the separation of the Gulf Stream. J. Phys. Oceanogr., 22, 12861301, https://doi.org/10.1175/1520-0485(1992)022<1286:ATOTPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gangopadhyay, A., A. Chaudhuri, and A. Taylor, 2016: On the nature of temporal variability of the Gulf Stream path from 75° to 55°W. Earth Interact., 20, https://doi.org/10.1175/EI-D-15-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, P. B., J. Yin, S. M. Griffies, and S. Zhang, 2015: An extreme event of sea-level rise along the northeast coast of North America in 2009–2010. Nat. Commun., 6, 6346, https://doi.org/10.1038/ncomms7346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1975: On ocean spindown I: A linear experiment. J. Phys. Oceanogr., 5, 399409, https://doi.org/10.1175/1520-0485(1975)005<0399:OOSIAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamby, D. M., 1994: A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess., 32, 135154, https://doi.org/10.1007/BF00547132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hameed, S., and S. Piontkovski, 2004: The dominant influence of the Icelandic low on the position of the Gulf Stream northwall. Geophys. Res. Lett., 31, L09303, https://doi.org/10.1029/2004GL019561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35, https://doi.org/10.1029/134GM01.

    • Crossref
    • Export Citation
  • Jennings, E., and N. Allott, 2006: Position of the Gulf Stream influences lake nitrate concentrations in SW Ireland. Aquat. Sci., 68, 482489, https://doi.org/10.1007/s00027-006-0847-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., and R. Zhang, 2010: On the path of the Gulf Stream and the Atlantic meridional overturning circulation. J. Climate, 23, 31463154, https://doi.org/10.1175/2010JCLI3310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., C. Deser, and M. A. Spall, 2000: The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation. J. Climate, 13, 25502569, https://doi.org/10.1175/1520-0442(2000)013<2550:TRBDVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., Y.-O. Kwon, and L. Yu, 2009: On the relationship between synoptic wintertime atmospheric variability and path shifts in the Gulf Stream and the Kuroshio Extension. J. Climate, 22, 31773192, https://doi.org/10.1175/2008JCLI2690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, P. Chang, and A. W. Robertson, 2006: The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J. Climate, 19, 59495970, https://doi.org/10.1175/JCLI3943.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp.

  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lillibridge, J. L., III, and A. J. Mariano, 2013: A statistical analysis of Gulf Stream variability from 18+ years of altimetry data. Deep-Sea Res. II, 85, 127146, https://doi.org/10.1016/j.dsr2.2012.07.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., L. Wu, and E. Bayler, 1999: Rossby wave–coastal Kelvin wave interaction in the extratropics. Part I: Low-frequency adjustment in a closed basin. J. Phys. Oceanogr., 29, 23822404, https://doi.org/10.1175/1520-0485(1999)029<2382:RWCKWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., and Coauthors, 2015: Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr., 130, 91111, https://doi.org/10.1016/j.pocean.2014.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nye, J. A., T. M. Joyce, Y.-O. Kwon, and J. S. Link, 2011: Silver hake tracks changes in Northwest Atlantic circulation. Nat. Commun., 2, 412, https://doi.org/10.1038/ncomms1420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., R. Saravanan, and P. Chang, 2014: The impact of the El Niño–Southern Oscillation and Atlantic meridional mode on seasonal Atlantic tropical cyclone activity. J. Climate, 27, 53115328, https://doi.org/10.1175/JCLI-D-13-00687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña-Molino, B., and T. M. Joyce, 2008: Variability in the slope water and its relation to the Gulf Stream path. Geophys. Res. Lett., 35, L03606, https://doi.org/10.1029/2007GL032183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez-Hernández, M. D., and T. M. Joyce, 2014: Two modes of Gulf Stream variability revealed in the last two decades of satellite altimeter data. J. Phys. Oceanogr., 44, 149163, https://doi.org/10.1175/JPO-D-13-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, and J. R. N. Lazier, 1997: Mid-depth ventilation in the western boundary current system of the sub-polar gyre. Deep-Sea Res. I, 44, 10251054, https://doi.org/10.1016/S0967-0637(96)00122-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planque, B., and A. H. Taylor, 1998: Long-term changes in zooplankton and the climate of the North Atlantic. ICES J. Mar. Sci., 55, 644654, https://doi.org/10.1006/jmsc.1998.0390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by conservation of second-order moments. J. Geophys. Res., 91, 66716681, https://doi.org/10.1029/JD091iD06p06671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quenouille, M. H., 1952: Associated Measurements. Butterworths, 241 pp.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., 1999: On gyre interactions. Deep-Sea Res. II, 46, 139164, https://doi.org/10.1016/S0967-0645(98)00095-2.

  • Rossby, T., and R. L. Benway, 2000: Slow variations in mean path of the Gulf Stream east of Cape Hatteras. Geophys. Res. Lett., 27, 117120, https://doi.org/10.1029/1999GL002356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., C. Flagg, and K. Donohue, 2010: On the variability of Gulf Stream transport from seasonal to decadal timescales. J. Mar. Res., 68, 503522, https://doi.org/10.1357/002224010794657128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Franks, A., and R. Zhang, 2015: Impact of the Atlantic meridional overturning circulation on the decadal variability of the Gulf Stream path and regional chlorophyll and nutrient concentrations. Geophys. Res. Lett., 42, 98899897, https://doi.org/10.1002/2015GL066262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Franks, A., S. Hameed, and R. E. Wilson, 2016: The Icelandic low as a predictor of the Gulf Stream North Wall position. J. Phys. Oceanogr., 46, 817826, https://doi.org/10.1175/JPO-D-14-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 17811794, https://doi.org/10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., and N. Schneider, 2011: Interannual to decadal Gulf Stream variability in an eddy-resolving ocean model. Ocean Modell., 39, 209219, https://doi.org/10.1016/j.ocemod.2011.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, A. H., 1995: North–south shifts of the Gulf Stream and their climatic connection with the abundance of zooplankton in the UK and its surrounding seas. ICES J. Mar. Sci., 52, 711721, https://doi.org/10.1016/1054-3139(95)80084-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, A. H., 2005: A model of variations in the North Atlantic Oscillation. Geophys. Res. Lett., 32, L24713, https://doi.org/10.1029/2005GL023792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, A. H., and J. A. Stephens, 1980: Latitudinal displacements of the Gulf Stream (1966 to 1977) and their relation to temperature and zooplankton abundance in the NE Atlantic. Oceanol. Acta, 3, 145149.

    • Search Google Scholar
    • Export Citation
  • Taylor, A. H., and J. A. Stephens, 1998: The North Atlantic Oscillation and the latitude of the Gulf Stream. Tellus, 50A, 134142, https://doi.org/10.3402/tellusa.v50i1.14517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D., 2015: Meridional mode website. University of Wisconsin–Madison, accessed 6 June 2017, http://www.aos.wisc.edu/~dvimont/MModes/Home.html.

  • Vimont, D., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, https://doi.org/10.1029/2007GL029683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., B. T. Anderson, R. K. Kaufmann, and R. B. Myneni, 2004: The relation between the North Atlantic Oscillation and SSTs in the North Atlantic basin. J. Climate, 17, 47524759, https://doi.org/10.1175/JCLI-3186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watelet, S., J.-M. Beckers, and A. Barth, 2017: Reconstruction of the Gulf Stream from 1940 to the present and correlation with the North Atlantic Oscillation. J. Phys. Oceanogr., 47, 27412754, https://doi.org/10.1175/JPO-D-17-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, https://doi.org/10.1029/2012GL053196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., P. Cessi, and B. D. Cornuelle, 2017: An intrinsic mode of interannual variability in the Indian Ocean. J. Phys. Oceanogr., 47, 701719, https://doi.org/10.1175/JPO-D-16-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., T. J. Miller, S. Hameed, L. A. Alade, and J. A. Nye, 2018: Evaluating the utility of the Gulf Stream index for predicting recruitment of southern New England-mid Atlantic yellowtail flounder. Fish. Oceanogr., 27, 8595, https://doi.org/10.1111/fog.12236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and R. He, 2016: Gulf Stream variability and a triggering mechanism of its large meander in the South Atlantic Bight. J. Geophys. Res. Oceans, 121, 80218038, https://doi.org/10.1002/2016JC012077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2008: Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20705, https://doi.org/10.1029/2008GL035463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. K. Vallis, 2006: Impact of great salinity anomalies on the low-frequency variability of the North Atlantic climate. J. Climate, 19, 470482, https://doi.org/10.1175/JCLI3623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1133 493 147
PDF Downloads 693 156 12