Using GRACE to Estitmate Snowfall Accumulation and Assess Gauge Undercatch Corrections in High Latitudes

Ali Behrangi University of Arizona, Department of Hydrology and Atmospheric Sciences, Tucson, Arizona
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Ali Behrangi in
Current site
Google Scholar
PubMed
Close
,
Alex Gardner Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Alex Gardner in
Current site
Google Scholar
PubMed
Close
,
John T. Reager Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by John T. Reager in
Current site
Google Scholar
PubMed
Close
,
Joshua B. Fisher Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Joshua B. Fisher in
Current site
Google Scholar
PubMed
Close
,
Daqing Yang National Hydrology Research Center, Environment Canada, Saskatoon, Saskatchewan, Canada

Search for other papers by Daqing Yang in
Current site
Google Scholar
PubMed
Close
,
George J. Huffman NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by George J. Huffman in
Current site
Google Scholar
PubMed
Close
, and
Robert F. Adler Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland

Search for other papers by Robert F. Adler in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Ten years of terrestrial water storage anomalies from the Gravity Recovery and Climate Experiment (GRACE) were used to estimate high-latitude snowfall accumulation using a mass balance approach. The estimates were used to assess two common gauge-undercatch correction factors (CFs): the Legates climatology (CF-L) utilized in the Global Precipitation Climatology Project (GPCP) and the Fuchs dynamic correction model (CF-F) used in the Global Precipitation Climatology Centre (GPCC) monitoring product. The two CFs can be different by more than 50%. CF-L tended to exceed CF-F over northern Asia and Eurasia, while the opposite was observed over North America. Estimates of snowfall from GPCP, GPCC-L (GPCC corrected by CF-L), and GPCC-F (GPCC corrected by CF-F) were 62%, 64%, and 46% more than GPCC over northern Asia and Eurasia. The GRACE-based estimate (49% more than GPCC) was the closest to GPCC-F. We found that as near-surface air temperature decreased, the products increasingly underestimated the GRACE-based snowfall accumulation. Overall, GRACE showed that CFs are effective in improving GPCC estimates. Furthermore, our case studies and overall statistics suggest that CF-F is likely more effective than CF-L in most of the high-latitude regions studied here. GPCP showed generally better skill than GPCC-L, which might be related to the use of satellite data or additional quality controls on gauge inputs to GPCP. This study suggests that GPCP can be improved if it employs CF-L instead of CF-F to correct for gauge undercatch. However, this implementation requires further studies, region-specific analysis, and operational considerations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ali Behrangi, behrangi@email.arizona.edu

Abstract

Ten years of terrestrial water storage anomalies from the Gravity Recovery and Climate Experiment (GRACE) were used to estimate high-latitude snowfall accumulation using a mass balance approach. The estimates were used to assess two common gauge-undercatch correction factors (CFs): the Legates climatology (CF-L) utilized in the Global Precipitation Climatology Project (GPCP) and the Fuchs dynamic correction model (CF-F) used in the Global Precipitation Climatology Centre (GPCC) monitoring product. The two CFs can be different by more than 50%. CF-L tended to exceed CF-F over northern Asia and Eurasia, while the opposite was observed over North America. Estimates of snowfall from GPCP, GPCC-L (GPCC corrected by CF-L), and GPCC-F (GPCC corrected by CF-F) were 62%, 64%, and 46% more than GPCC over northern Asia and Eurasia. The GRACE-based estimate (49% more than GPCC) was the closest to GPCC-F. We found that as near-surface air temperature decreased, the products increasingly underestimated the GRACE-based snowfall accumulation. Overall, GRACE showed that CFs are effective in improving GPCC estimates. Furthermore, our case studies and overall statistics suggest that CF-F is likely more effective than CF-L in most of the high-latitude regions studied here. GPCP showed generally better skill than GPCC-L, which might be related to the use of satellite data or additional quality controls on gauge inputs to GPCP. This study suggests that GPCP can be improved if it employs CF-L instead of CF-F to correct for gauge undercatch. However, this implementation requires further studies, region-specific analysis, and operational considerations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ali Behrangi, behrangi@email.arizona.edu
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 8499, https://doi.org/10.1175/JAMC-D-11-052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2016: New Global Precipitation Climatology Project monthly analysis product corrects satellite data shifts. GEWEX News, 26 (4), International GEWEX Project Office, Silver Spring, MD,79.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, M. Sapiano, J.-J. Wang, and G. J. Huffman, 2017: Global precipitation: Means, variations and trends during the satellite era (1979–2014). Surv. Geophys., 38, 679699, https://doi.org/10.1007/s10712-017-9416-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alley, R., and Coauthors, 2007: Summary for policymakers. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, Cambridge, 1–18.

    • Crossref
    • Export Citation
  • Behrangi, A., M. Lebsock, S. Wong, and B. Lambrigtsen, 2012: On the quantification of oceanic rainfall using spaceborne sensors. J. Geophys. Res., 117, D20105, https://doi.org/10.1029/2012JD017979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., G. Stephens, R. F. Adler, G. J. Huffman, B. Lambrigtsen, and M. Lebsock, 2014a: An update on the oceanic precipitation rate and its zonal distribution in light of advanced observations from space. J. Climate, 27, 39573965, https://doi.org/10.1175/JCLI-D-13-00679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Y. Tian, B. H. Lambrigtsen, and G. L. Stephens, 2014b: What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res., 50, 48934905, https://doi.org/10.1002/2013WR014566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., S. Wong, K. Mallick, and J. B. Fisher, 2014c: On the net surface water exchange rate estimated from remote-sensing observation and reanalysis. Int. J. Remote Sens., 35, 21702185, https://doi.org/10.1080/01431161.2014.889866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and Coauthors, 2016: Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. Atmos., 121, 44684486, https://doi.org/10.1002/2015JD024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., A. S. Gardner, J. T. Reager, and J. B. Fisher, 2017: Using GRACE to constrain precipitation amount over cold mountainous basins. Geophys. Res. Lett., 44, 219227, https://doi.org/10.1002/2016GL071832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, https://doi.org/10.1175/JAM2331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boening, C., M. Lebsock, F. Landerer, and G. Stephens, 2012: Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett., 39, L21501, https://doi.org/10.1029/2012GL053316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Rep. NASA/TM-2015-104606, Vol. 43, 139 pp.

  • Chen, S., and Coauthors, 2016: Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System. J. Hydrol., 541, 862872, https://doi.org/10.1016/j.jhydrol.2016.07.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 2008: Physical Hydrology. 2nd ed. Waveland Press, 646 pp.

  • Ferraro, R. R., and Coauthors, 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51, 378398, https://doi.org/10.1109/TGRS.2012.2199121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forland, E. J., and Coauthors, 1996: Manual for Operational Correction of Nordic Precipitation Data. Norske Meteorologiske Institutt Rep. 24/96, 66 pp.

  • Fuchs, T., J. Rapp, F. Rubel, and B. Rudolf, 2001: Correction of synoptic precipitation observations due to systematic measuring errors with special regard to precipitation phases. Phys. Chem. Earth, 26B, 689693, https://doi.org/10.1016/S1464-1909(01)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and Coauthors, 2013: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852857, https://doi.org/10.1126/science.1234532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., G. Moholdt, T. Scambos, M. Fahnstock, S. Ligtenberg, M. van den Broeke, and J. Nilsson, 2018: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere, 12, 521547, https://doi.org/10.5194/tc-12-521-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., P. Y. T. Louie, and D. Yang, 1998: WMO solid precipitation measurement intercomparison. WMO Rep. 67, 212 pp.

  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, https://doi.org/10.1029/2008JD009973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and S. C. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., H.-T. Wu, and K.-M. Kim, 2013: A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys. Res. Lett., 40, 31633169, https://doi.org/10.1002/grl.50420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, https://doi.org/10.1029/2011JD016076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127, https://doi.org/10.1002/joc.3370100202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113, D00A09, https://doi.org/10.1029/2007JD009766.

  • McClelland, J. W., S. J. Déry, B. J. Peterson, R. M. Holmes, and E. F. Wood, 2006: A pan-Arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett., 33, L06715, https://doi.org/10.1029/2006GL025753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moritz, R. E., C. M. Bitz, and E. J. Steig, 2002: Dynamics of recent climate change in the Arctic. Science, 297, 14971502, https://doi.org/10.1126/science.1076522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., K.-W. Seo, Z.-L. Yang, C. Wilson, H. Su, J. Chen, and M. Rodell, 2007: Retrieving snow mass from GRACE terrestrial water storage change with a land surface model. Geophys. Res. Lett., 34, L15704, https://doi.org/10.1029/2007GL030413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, X., and Coauthors, 2016: Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. Cryosphere, 10, 23472360, https://doi.org/10.5194/tc-10-2347-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow?: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubel, F., and M. Hantel, 1999: Correction of daily rain gauge measurements in the Baltic Sea drainage basin. Hydrol. Res., 30, 191208, https://doi.org/10.2166/nh.1999.0011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, https://doi.org/10.1029/2008JD009972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaff, L., D. Yang, Y. Li, and E. Mekis, 2015: Inconsistency in precipitation measurements across the Alaska–Yukon border. Cryosphere, 9, 24172428, https://doi.org/10.5194/tc-9-2417-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, 2017: Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere, 8, 52, https://doi.org/10.3390/atmos8030052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2005: The Arctic Climate System. 1st ed. Cambridge University Press, 385 pp.

    • Crossref
    • Export Citation
  • Serreze, M. C., and J. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264, https://doi.org/10.1007/s10584-005-9017-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2018: Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219222, https://doi.org/10.1038/s41586-018-0179-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, https://doi.org/10.1175/JAMC-D-12-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smalley, M., T. L’Ecuyer, M. Lebsock, and J. Haynes, 2014: A comparison of precipitation occurrence from the NCEP Stage IV QPE product and the CloudSat Cloud Profiling Radar. J. Hydrometeor., 15, 444458, https://doi.org/10.1175/JHM-D-13-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, L. C., Y. Sheng, G. M. MacDonald, and L. D. Hinzman, 2005: Disappearing Arctic lakes. Science, 308, 1429, https://doi.org/10.1126/science.1108142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., and Coauthors, 2007, Technical summary. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 19–91.

  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, https://doi.org/10.1029/2008JD009982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., M. Z. Hakuba, M. Hawcroft, J. M. Haywood, A. Behrangi, J. E. Kay, and P. J. Webster, 2016: The curious nature of the hemispheric symmetry of the Earth’s water and energy balances. Curr. Climate Change Rep., 1, 135147, https://doi.org/10.1007/s40641-016-0043-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strangeways, I., 2006: Precipitation: Theory, Measurement and Distribution. Cambridge University Press, 302 pp.

    • Crossref
    • Export Citation
  • Swenson, S., 2010: Assessing high-latitude winter precipitation from global precipitation analyses using GRACE. J. Hydrometeor., 11, 405420, https://doi.org/10.1175/2009JHM1194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, https://doi.org/10.1109/TGRS.2008.2002030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, 2004: GRACE measurements of mass variability in the Earth system. Science, 305, 503505, https://doi.org/10.1126/science.1099192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., A. Dai, D. Yang, and Z. Xie, 2007: Effects of precipitation-bias corrections on surface hydrology over northern latitudes. J. Geophys. Res., 112, D14101, https://doi.org/10.1029/2007JD008420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2011: Level 2 combined radar and lidar cloud scenario classification product process description and interface control document. Jet Propulsion Laboratory, 61 pp., http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CLDCLASS-LIDAR_PDICD.P_R04.20120522.pdf.

  • Wang, Z., and Coauthors, 2013: 2B-CLDCLASS-LIDAR Interface Control Document. 22 pp., cswww.cira.colostate.edu/icd_pdf.php?avid=36&pvids=12.

  • Watkins, M. M., D. N. Wiese, D.-N. Yuan, C. Boening, and F. W. Landerer, 2015: Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth, 120, 26482671, https://doi.org/10.1002/2014JB011547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, Y., P. Kirstetter, J. J. Gourley, Y. Hong, A. Behrangi, and Z. Flamig, 2017: Evaluation of MRMS snowfall products over the western United States. J. Hydrometeor., 18, 17071713, https://doi.org/10.1175/JHM-D-16-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, A. J. Heymsfield, G. L. Stephens, D. R. Hudak, and P. Rodriguez, 2014: Estimating snow microphysical properties using collocated multisensor observations. J. Geophys. Res. Atmos., 119, 89418961, https://doi.org/10.1002/2013JD021303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and Coauthors, 2001: Compatibility evaluation of national precipitation gage measurements. J. Geophys. Res., 106, 14811492, https://doi.org/10.1029/2000JD900612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., D. Kane, K. D. Hinzman, X. Zhang, T. Zhang, and H. Ye, 2002: Siberian Lena River hydrological regime and recent change. J. Geophys. Res., 107, 4694, https://doi.org/10.1029/2002JD002542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., D. Kane, Z. Zhang, D. Legates, and B. Goodison, 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32, L19501, https://doi.org/10.1029/2005GL024057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, B., D. Yang, and L. Ma, 2012: Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China. Environ. Res. Lett., 7, 025201, https://doi.org/10.1088/1748-9326/7/2/025201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., E. J. Fetzer, S. Wong, A. Behrangi, E. T. Olsen, J. Cohen, B. H. Lambrigtsen, and L. Chen, 2014: Impact of increased water vapor on precipitation efficiency over northern Eurasia. Geophys. Res. Lett., 41, 29412947, https://doi.org/10.1002/2014GL059830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., E. J. Fetzer, A. Behrangi, S. Wong, B. H. Lambrigtsen, C. Y. Wang, J. Cohen, and B. L. Gamelin, 2016: Increasing daily precipitation intensity associated with warmer air temperatures over northern Eurasia. J. Climate, 29, 623636, https://doi.org/10.1175/JCLI-D-14-00771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Coauthors, 2017: Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett., 44, 55505560, https://doi.org/10.1002/2017GL073773.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1287 614 139
PDF Downloads 685 181 15