Wind and Wave Extremes from Atmosphere and Wave Model Ensembles

Alberto Meucci Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Alberto Meucci in
Current site
Google Scholar
PubMed
Close
,
Ian R. Young Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Ian R. Young in
Current site
Google Scholar
PubMed
Close
, and
Øyvind Breivik Norwegian Meteorological Institute and University of Bergen, Bergen, Norway

Search for other papers by Øyvind Breivik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present work develops an innovative approach to wind speed and significant wave height extreme value analysis. The approach is based on global atmosphere–wave model ensembles, the members of which are propagated in time from the best estimate of the initial state, with slight perturbations to the initial conditions, to estimate the uncertainties connected to model representations of reality. The low correlation of individual ensemble member forecasts at advanced lead times guarantees their independence and allows us to perform inference statistics. The advantage of ensemble probabilistic forecasts is that it is possible to synthesize an equivalent dataset of duration far longer than the simulation period. This allows the use of direct inference statistics to obtain extreme value estimates. A short time series of six years (from 2010 to 2016) of ensemble forecasts is selected to avoid major changes to the model physics and resolution and thus ensure stationarity. This time series is used to undertake extreme value analysis. The study estimates global wind speed and wave height return periods by selecting peaks from ensemble forecasts from +216- to +240-h lead time from the operational ensemble forecast dataset of the European Centre for Medium-Range Weather Forecasts (ECMWF). The results are compared with extreme value analyses performed on a commonly used reanalysis dataset, ERA-Interim, and buoy data. The comparison with traditional methods demonstrates the potential of this novel approach for statistical analysis of significant wave height and wind speed ocean extremes at the global scale.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alberto Meucci, ameucci@student.unimelb.edu.au

Abstract

The present work develops an innovative approach to wind speed and significant wave height extreme value analysis. The approach is based on global atmosphere–wave model ensembles, the members of which are propagated in time from the best estimate of the initial state, with slight perturbations to the initial conditions, to estimate the uncertainties connected to model representations of reality. The low correlation of individual ensemble member forecasts at advanced lead times guarantees their independence and allows us to perform inference statistics. The advantage of ensemble probabilistic forecasts is that it is possible to synthesize an equivalent dataset of duration far longer than the simulation period. This allows the use of direct inference statistics to obtain extreme value estimates. A short time series of six years (from 2010 to 2016) of ensemble forecasts is selected to avoid major changes to the model physics and resolution and thus ensure stationarity. This time series is used to undertake extreme value analysis. The study estimates global wind speed and wave height return periods by selecting peaks from ensemble forecasts from +216- to +240-h lead time from the operational ensemble forecast dataset of the European Centre for Medium-Range Weather Forecasts (ECMWF). The results are compared with extreme value analyses performed on a commonly used reanalysis dataset, ERA-Interim, and buoy data. The comparison with traditional methods demonstrates the potential of this novel approach for statistical analysis of significant wave height and wind speed ocean extremes at the global scale.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alberto Meucci, ameucci@student.unimelb.edu.au
Save
  • Aarnes, O. J., Ø. Breivik, and M. Reistad, 2012: Wave extremes in the northeast Atlantic. J. Climate, 25, 15291543, https://doi.org/10.1175/JCLI-D-11-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aarnes, O. J., S. Abdalla, J.-R. Bidlot, and Ø. Breivik, 2015: Marine wind and wave height trends at different ERA-Interim forecast ranges. J. Climate, 28, 819837, https://doi.org/10.1175/JCLI-D-14-00470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alves, J. H. G. M., and I. R. Young, 2003: On estimating extreme wave heights using combined Geosat, Topex/Poseidon and ERS-1 altimeter data. Appl. Ocean Res., 25, 167186, https://doi.org/10.1016/j.apor.2004.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, L., N. Guinasso Jr., J. Walpert, and S. D. Howden, 2010: A comparison of methods for determining significant wave heights applied to a 3-m discus buoy during Hurricane Katrina. J. Atmos. Oceanic Technol., 27, 10121028, https://doi.org/10.1175/2010JTECHO724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bidlot, J.-R., D. J. Holmes, P. A. Wittmann, R. Lalbeharry, and H. S. Chen, 2002: Intercomparison of the performance of operational ocean wave forecasting systems with buoy data. Wea. Forecasting, 17, 287310, https://doi.org/10.1175/1520-0434(2002)017<0287:IOTPOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., and O. J. Aarnes, 2017: Efficient bootstrap estimates for tail statistics. Nat. Hazards Earth Syst. Sci., 17, 357366, https://doi.org/10.5194/nhess-17-357-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., O. J. Aarnes, J.-R. Bidlot, A. Carrasco, and Ø. Saetra, 2013: Wave extremes in the northeast Atlantic from ensemble forecasts. J. Climate, 26, 75257540, https://doi.org/10.1175/JCLI-D-12-00738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., O. J. Aarnes, S. Abdalla, J.-R. Bidlot, and P. A. Janssen, 2014: Wind and wave extremes over the world oceans from very large ensembles. Geophys. Res. Lett., 41, 51225131, https://doi.org/10.1002/2014GL060997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 125, 99119, https://doi.org/10.1175/1520-0493(1997)125<0099:PFSOEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456, https://doi.org/10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., J.-R. Bidlot, N. Wedi, M. Fuentes, M. Hamrud, G. Holt, and F. Vitart, 2007: The new ECMWF VAREPS (Variable Resolution Ensemble Prediction System). Quart. J. Roy. Meteor. Soc., 133, 681695, https://doi.org/10.1002/qj.75.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caires, S., 2011: Extreme value analysis: Wave data. Joint WMO/IOC Technical Commission for Oceanography and Marine Meteorology (JCOMM) Tech. Rep. 57, 33 pp., https://www.oceanbestpractices.net/handle/11329/367.

  • Caires, S., 2016: A comparative simulation study of the annual maxima and the peaks-over-threshold methods. J. Offshore Mech. Arctic Eng., 138, 051601, https://doi.org/10.1115/1.4033563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caires, S., and A. Sterl, 2005: 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J. Climate, 18, 10321048, https://doi.org/10.1175/JCLI-3312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caires, S., A. Sterl, J. Bidlot, N. Graham, and V. Swail, 2004: Intercomparison of different wind–wave reanalyses. J. Climate, 17, 18931913, https://doi.org/10.1175/1520-0442(2004)017<1893:IODWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modelling of Extreme Value Theory. Springer, 208 pp.

    • Crossref
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durrant, T. H., D. J. Greenslade, and I. Simmonds, 2013: The effect of statistical wind corrections on global wave forecasts. Ocean Modell., 70, 116131, https://doi.org/10.1016/j.ocemod.2012.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739759, https://doi.org/10.3402/tellusa.v21i6.10143.

  • Ferreira, J., and C. G. Soares, 1998: An application of the peaks over threshold method to predict extremes of significant wave height. J. Offshore Mech. Arctic Eng., 120, 165176, https://doi.org/10.1115/1.2829537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furevik, B. R., and H. Haakenstad, 2012: Near-surface marine wind profiles from rawinsonde and NORA10 hindcast. J. Geophys. Res., 117, D23106, https://doi.org/10.1029/2012JD018523.

    • Search Google Scholar
    • Export Citation
  • Gibson, J., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF, 72 pp., https://www.ecmwf.int/en/elibrary/9584-era-description.

  • Gulev, S. K., and V. Grigorieva, 2004: Last century changes in ocean wind wave height from global visual wave data. Geophys. Res. Lett., 31, L24302, https://doi.org/10.1029/2004GL021040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., Y. Fan, N. Mori, A. Semedo, and X. L. Wang, 2013: Projected changes in wave climate from a multi-model ensemble. Nat. Climate Change, 3, 471476, https://doi.org/10.1038/nclimate1791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, p. 7, https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production.

  • Holthuijsen, L. H., 2007: Waves in Oceanic and Coastal Waters. Cambridge University Press, 404 pp.

    • Crossref
    • Export Citation
  • Howden, S., D. Gilhousen, N. Guinasso, J. Walpert, M. Sturgeon, and L. Bender, 2008: Hurricane Katrina winds measured by a buoy-mounted sonic anemometer. J. Atmos. Oceanic Technol., 25, 607616, https://doi.org/10.1175/2007JTECHO518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaksen, L., J. Haseler, R. Buizza, and M. Leutbecher, 2010: The new ensemble of data assimilations. ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 17–21.

  • Jensen, R. E., V. R. Swail, R. H. Bouchard, R. E. Riley, T. J. Hesser, M. Blaseckie, and C. MacIsaac, 2015: Field laboratory for ocean sea state investigation and experimentation: FLOSSIE: Intra-measurement evaluation of 6N wave buoy systems. 14th Int. Workshop on Wave Hindcasting and Forecasting and Fifth Coastal Hazard Symposium, Key West, FL, WMO/IOC JCOMM, Vol. A1, http://www.waveworkshop.org/14thWaves/Papers/WW14%20FLOSSIE%20Jensen%20et%20al.pdf.

  • Large, W., J. Morzel, and G. Crawford, 1995: Accounting for surface wave distortion of the marine wind profile in low-level ocean storms wind measurements. J. Phys. Oceanogr., 25, 29592971, https://doi.org/10.1175/1520-0485(1995)025<2959:AFSWDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., 2005: Roots of ensemble forecasting. Mon. Wea. Rev., 133, 18651885, https://doi.org/10.1175/MWR2949.1.

  • Lopatoukhin, L., V. Rozhkov, V. Ryabinin, V. Swail, A. Boukhanovsky, and A. Degtyarev, 2000: Estimation of extreme wind wave heights. WMO/TD-No. 1041, 73 pp.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T., and R. Hagedorn, Eds., 2006: Predictability of Weather and Climate. Cambridge University Press, 718 pp.

    • Crossref
    • Export Citation
  • Pickands, J. I., 1975: Statistical inference using extreme order statistics. Ann. Stat., 3, 119131, https://doi.org/10.1214/aos/1176343003.

  • Pineau-Guillou, L., F. Ardhuin, M.-N. Bouin, J.-L. Redelsperger, B. Chapron, J.-R. Bidlot, and Y. Quilfen, 2018: Strong winds in a coupled wave–atmosphere model during a North Atlantic storm event: Evaluation against observations. Quart. J. Roy. Meteor. Soc., 144, 317332, https://doi.org/10.1002/qj.3205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., J.-N. Thépaut, and P. Courtier, 1998: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc., 124, 18611887, https://doi.org/10.1002/qj.49712455005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranjha, R., M. Tjernström, A. Semedo, G. Svensson, and R. M. Cardoso, 2015: Structure and variability of the Oman coastal low-level jet. Tellus, 67A, 25285, https://doi.org/10.3402/tellusa.v67.25285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reistad, M., Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik, and J.-R. Bidlot, 2011: A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J. Geophys. Res. Oceans, 116, C05019, https://doi.org/10.1029/2010JC006402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17, 38663873, https://doi.org/10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterl, A., and S. Caires, 2005: Climatology, variability and extrema of ocean waves: The web-based KNMI/ERA-40 wave atlas. Int. J. Climatol., 25, 963977, https://doi.org/10.1002/joc.1175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., and K. F. Cheung, 2014: Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis. Ocean Modell., 75, 6583, https://doi.org/10.1016/j.ocemod.2013.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., and M. J. Yelland, 2001: Comments on “On the effect of ocean waves on the kinetic energy balance and consequences for the inertial dissipation technique.” J. Phys. Oceanogr., 31, 25322536, https://doi.org/10.1175/1520-0485(2001)031<2532:COOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Vinoth, J., and I. Young, 2011: Global estimates of extreme wind speed and wave height. J. Climate, 24, 16471665, https://doi.org/10.1175/2010JCLI3680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 485 pp.

    • Crossref
    • Export Citation
  • Wang, X. L., Y. Feng, and V. R. Swail, 2014: Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophys. Res. Lett., 41, 10261034, https://doi.org/10.1002/2013GL058650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. International Geophysics Series, Vol. 100. Academic Press, 676 pp.

  • WMO, 1998: Guide to wave analysis and forecasting. 2nd ed. WMO-No. 702, 159 pp., https://library.wmo.int/pmb_ged/wmo_702.pdf.

  • Young, I. R., 1994: Global ocean wave statistics obtained from satellite observations. Appl. Ocean Res., 16, 235248, https://doi.org/10.1016/0141-1187(94)90023-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol., 19, 931950, https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and G. Holland, 1996: Atlas of the Oceans: Wind and Wave Climate. Pergamon, 241 pp.

  • Young, I. R., and M. Donelan, 2018: On the determination of global ocean wind and wave climate from satellite observations. Remote Sens. Environ., 215, 228241, https://doi.org/10.1016/j.rse.2018.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., S. Zieger, and A. V. Babanin, 2011: Global trends in wind speed and wave height. Science, 332, 451455, https://doi.org/10.1126/science.1197219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., J. Vinoth, S. Zieger, and A. V. Babanin, 2012: Investigation of trends in extreme value wave height and wind speed. J. Geophys. Res., 117, C00J06, https://doi.org/10.1029/2011JC007753.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., E. Sanina, and A. Babanin, 2017: Calibration and cross-validation of a global wind and wave database of altimeter, radiometer and scatterometer measurements. J. Atmos. Oceanic Technol., 34, 12851306, https://doi.org/10.1175/JTECH-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., and R. A. Brown, 1998: Scatterometer observations at high wind speeds. J. Appl. Meteor., 37, 14121420, https://doi.org/10.1175/1520-0450(1998)037<1412:SOAHWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zieger, S., J. Vinoth, and I. R. Young, 2009: Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. J. Atmos. Oceanic Technol., 26, 25492564, https://doi.org/10.1175/2009JTECHA1303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zieger, S., A. V. Babanin, and I. R. Young, 2014: Changes in ocean surface wind with a focus on trends in regional and monthly mean values. Deep-Sea Res. I, 86, 5667, https://doi.org/10.1016/j.dsr.2014.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 941 355 27
PDF Downloads 663 160 16