Modulation of the Meridional Structures of the Indo-Pacific Warm Pool on the Response of the Hadley Circulation to Tropical SST

Juan Feng College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Juan Feng in
Current site
Google Scholar
PubMed
Close
,
Jianping Li College of Global Change and Earth System Science, Beijing Normal University, Beijing, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Jianping Li in
Current site
Google Scholar
PubMed
Close
,
Fred Kucharski Earth System Physics Section, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, and Department of Meteorology, Center of Excellence for Climate Change Research, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Fred Kucharski in
Current site
Google Scholar
PubMed
Close
,
Yaqi Wang College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Yaqi Wang in
Current site
Google Scholar
PubMed
Close
,
Cheng Sun College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Cheng Sun in
Current site
Google Scholar
PubMed
Close
,
Fei Xie College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Fei Xie in
Current site
Google Scholar
PubMed
Close
, and
Yun Yang College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Yun Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

By decomposing the variations of the Hadley circulation (HC) and tropical zonal-mean sea surface temperature (SST) into the equatorially asymmetric (HEA for HC, SEA for SST) and symmetric (HES for HC, SES for SST) components, the varying response of the HC to different SST meridional structures under warm and cold conditions of the Indo-Pacific warm pool (IPWP) is investigated over the period 1979–2016. The response of the HC to SST evidences an asymmetric variation between warm and cold IPWP conditions; that is, the response ratio of HEA to SEA relative to that of HES to SES is ~5 under warm conditions and ~2 under cold conditions. This asymmetry is primarily due to a decrease in the HEA-to-SEA ratio under cold IPWP conditions, and is driven by changes in the meridional distribution of SST anomalies. Equatorial asymmetric (symmetric) SST anomalies are dominated by warm (cold) IPWP conditions. Thus, variations of SEA are suppressed under cold IPWP conditions, contributing to the observed weakening of the HEA-to-SEA ratio. The results presented here indicate that the HC is more sensitive to the underlying SST when the IPWP is warmer, during which the variation of SEA is enhanced, suggesting a recent strengthening of the response of the HC to SST, as the IPWP has warmed over the past several decades, and highlighting the importance of the IPWP meridional structures rather than the overall warming of the HC.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Juan Feng, fengjuan@bnu.edu.cn

Abstract

By decomposing the variations of the Hadley circulation (HC) and tropical zonal-mean sea surface temperature (SST) into the equatorially asymmetric (HEA for HC, SEA for SST) and symmetric (HES for HC, SES for SST) components, the varying response of the HC to different SST meridional structures under warm and cold conditions of the Indo-Pacific warm pool (IPWP) is investigated over the period 1979–2016. The response of the HC to SST evidences an asymmetric variation between warm and cold IPWP conditions; that is, the response ratio of HEA to SEA relative to that of HES to SES is ~5 under warm conditions and ~2 under cold conditions. This asymmetry is primarily due to a decrease in the HEA-to-SEA ratio under cold IPWP conditions, and is driven by changes in the meridional distribution of SST anomalies. Equatorial asymmetric (symmetric) SST anomalies are dominated by warm (cold) IPWP conditions. Thus, variations of SEA are suppressed under cold IPWP conditions, contributing to the observed weakening of the HEA-to-SEA ratio. The results presented here indicate that the HC is more sensitive to the underlying SST when the IPWP is warmer, during which the variation of SEA is enhanced, suggesting a recent strengthening of the response of the HC to SST, as the IPWP has warmed over the past several decades, and highlighting the importance of the IPWP meridional structures rather than the overall warming of the HC.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Juan Feng, fengjuan@bnu.edu.cn
Save
  • Alory, G., S. Wijffels, and G. M. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, https://doi.org/10.1029/2006GL028044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, Z. S., and Coauthors, 2015: Global monsoon dynamics and climate change. Annu. Rev. Earth Planet. Sci., 43, 2977, https://doi.org/10.1146/annurev-earth-060313-054623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W. J., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087, https://doi.org/10.1126/science.228.4703.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1995: The influence of Hadley circulation intensity changes on extratropical climate in an idealized model. J. Atmos. Sci., 52, 20062024, https://doi.org/10.1175/1520-0469(1995)052<2006:TIOHCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., and B. S. Bradley, Eds., 2004: The Hadley Circulation: Present, Past and Future. Advances in Global Change Research, Vol. 21, Springer, 511 pp., https://doi.org/10.1007/978-1-4020-2944-8.

    • Crossref
    • Export Citation
  • Dong, L., T. J. Zhou, and B. Wu, 2014: Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Climate Dyn., 42, 203217, https://doi.org/10.1007/s00382-013-1722-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A. M., C. Sui, and G. X. Wu, 2008: Simulation of local air-sea interaction in the great warm pool and its influence on Asian monsoon. J. Geophys. Res., 113, D22105, https://doi.org/10.1029/2008JD010520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., and J. P. Li, 2013: Contrasting impacts of two types of ENSO on the boreal spring Hadley circulation. J. Climate, 26, 47734789, https://doi.org/10.1175/JCLI-D-12-00298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., J. P. Li, and F. Xie, 2013: Long-term variation of the principal mode of boreal spring Hadley circulation linked to SST over the Indo-Pacific warm pool. J. Climate, 26, 532544, https://doi.org/10.1175/JCLI-D-12-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., J. P. Li, F. F. Jin, Z. Liu, X. Nan, and Y. Guo, 2016a: Contrasting responses of the Hadley circulation to equatorially asymmetric and symmetric meridional sea surface temperature structures. J. Climate, 29, 89498963, https://doi.org/10.1175/JCLI-D-16-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., J. Zhu, and F. Li, 2016b: Climatological vertical features of Hadley circulation depicted by the NCEP/NCAR, ERA40, NCEP-DOE, JRA25, ERA-Interim, and CFSR reanalyses. SOLA, 12, 237241, https://doi.org/10.2151/sola.2016-047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., J. P. Li, F. F. Jin, S. Zhao, and F. Xie, 2017: The responses of the Hadley circulation to different meridional SST structures in the seasonal cycle. J. Geophys. Res. Atmos., 122, 77857799, https://doi.org/10.1002/2017JD026953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., J. P. Li, F. F. Jin, S. Zhao, and J. Zhu, 2018: Relationship between the Hadley circulation and different tropical meridional SST structures during boreal summer. J. Climate, 31, 65756590, https://doi.org/10.1CD-18-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, R., J. P. Li, and J. C. Wang, 2011: Regime change of the boreal summer Hadley circulation and its connection with the tropical SST. J. Climate, 24, 38673877, https://doi.org/10.1175/2011JCLI3959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and N. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, https://doi.org/10.1038/312141a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S. J., and D. X. Hu, 2013: Review on the western Pacific warm pool study. Stud. Mar. Sin., 51, 3748.

  • Johnson, N. C., and S. P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, https://doi.org/10.1038/ngeo1008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidwell, A., L. Han, Y.-H. Jo, and X.-H. Yan, 2017: Decadal western Pacific warm pool variability: A centroid and heat content study. Sci. Rep., 7, 13141, https://doi.org/10.1038/s41598-017-13351-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J. S., and I. S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801, https://doi.org/10.1175/JCLI3660.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., and Q. C. Zeng, 2002: A unified monsoon index. Geophys. Res. Lett., 29, 1274, https://doi.org/10.1029/2001GL013874.

  • Li, J. P., and J. Feng, 2017: Tropical large-scale atmospheric interaction in association with subtropical aridity trend. Aridity Trend in Northern China, C. Fu and H. Mao, Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 8, World Scientific Publishing, 111–136, https://doi.org/10.1142/9789814723541_0006.

    • Crossref
    • Export Citation
  • Li, J. P., and Coauthors, 2013: Progress in air-land-sea interactions in Asia and their role in global and Asian climate change (in Chinese). Chin. J. Atmos. Sci., 37, 518538.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1994: Climate dynamics and global change. Annu. Rev. Fluid Mech., 26, 353378, https://doi.org/10.1146/annurev.fl.26.010194.002033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, L., C.-C. Shen, K.-Y. Wei, G. S. Burr, H.-S. Mii, M.-T. Chen, S.-Y. Lee, and M.-C. Tsai, 2014: Millennial meridional dynamics of the Indo-Pacific warm pool during the last termination. Climate Past, 10, 22532261, https://doi.org/10.5194/cp-10-2253-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 70118 706, https://doi.org/10.1073/pnas.1210239109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., and J. P. Li, 2008: The principal modes of variability of the boreal winter Hadley cell. Geophys. Res. Lett., 35, L01808, https://doi.org/10.1029/2007GL031883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., H. F. Diaz, and M. P. Hoerling, 2004: Change in the tropical Hadley cell since 1950. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. S. Bradley, Eds., Advances in Global Change Research, Vol. 21, Springer, 85–120, https://doi.org/10.1007/978-1-4020-2944-8_4.

    • Crossref
    • Export Citation
  • Rao, S. A., A. R. Dhakate, S. K. Saha, S. Mahapatra, H. S. Chaudhari, S. Pokhrel, and S. K. Sahu, 2012: Why is Indian Ocean warming consistently? Climatic Change, 110, 709719, https://doi.org/10.1007/s10584-011-0121-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rind, D., and W. B. Rossow, 1984: The effects of physical processes on the Hadley circulation. J. Atmos. Sci., 41, 479507, https://doi.org/10.1175/1520-0469(1984)041<0479:TEOPPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., K. Ritika, P. Terray, and S. Masson, 2014: The curious case of Indian Ocean warming. J. Climate, 27, 85018509, https://doi.org/10.1175/JCLI-D-14-00471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. McPhaden, and W. J. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E., and R. S. Lindzen, 1977: Axially symmetric steady-state models of the basic state of instability and climate studies. Part I. Linearized calculations. J. Atmos. Sci., 34, 253279, https://doi.org/10.1175/1520-0469(1977)034<0263:ASSSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D. Z., 2003: A possible effect of an increase in the warm-pool SST on the magnitude of El Niño warming. J. Climate, 16, 185205, https://doi.org/10.1175/1520-0442(2003)016<0185:APEOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swapna, P., R. Krishnan, and J. M. Wallace, 2014: Indian Ocean and monsoon coupled interactions in a warming environment. Climate Dyn., 42, 24392454, https://doi.org/10.1007/s00382-013-1787-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The coupled ocean–atmosphere response experiment. Bull. Amer. Meteor. Soc., 73, 13771416, https://doi.org/10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and C. Funk, 2011: A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dyn., 37, 24172435, https://doi.org/10.1007/s00382-010-0984-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, D., and J. P. Li, 2011: Mechanism of stratospheric decadal abrupt cooling in the early 1990s as influenced by the Pinatubo eruption. Chin. Sci. Bull., 56, 772780, https://doi.org/10.1007/s11434-010-4287-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. M. Xu, W. S. Kessler, and M. Nonaka, 2005: Air–sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. J. Climate, 18, 520, https://doi.org/10.1175/JCLI-3249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–Western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X.-H., C.-R. Ho, Q. Zheng, and V. Klemas, 1992: Temperature and size variabilities of the Western Pacific Warm Pool. Science, 258, 16431645, https://doi.org/10.1126/science.258.5088.1643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Q. Han, and F. Sienz, 2018: Unraveling causes for the changing behavior of tropical Indian Ocean in the past few decades. J. Climate, 31, 23772388, https://doi.org/10.1175/JCLI-D-17-0445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 732 343 99
PDF Downloads 288 47 5