Distinguishing Trends and Shifts from Memory in Climate Data

Claudie Beaulieu Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, California, and Ocean and Earth Science, University of Southampton, Southampton, United Kingdom

Search for other papers by Claudie Beaulieu in
Current site
Google Scholar
PubMed
Close
and
Rebecca Killick Department of Mathematics and Statistics, University of Lancaster, Lancaster, United Kingdom

Search for other papers by Rebecca Killick in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The detection of climate change and its attribution to the corresponding underlying processes is challenging because signals such as trends and shifts are superposed on variability arising from the memory within the climate system. Statistical methods used to characterize change in time series must be flexible enough to distinguish these components. Here we propose an approach tailored to distinguish these different modes of change by fitting a series of models and selecting the most suitable one according to an information criterion. The models involve combinations of a constant mean or a trend superposed to a background of white noise with or without autocorrelation to characterize the memory, and are able to detect multiple changepoints in each model configuration. Through a simulation study on synthetic time series, the approach is shown to be effective in distinguishing abrupt changes from trends and memory by identifying the true number and timing of abrupt changes when they are present. Furthermore, the proposed method is better performing than two commonly used approaches for the detection of abrupt changes in climate time series. Using this approach, the so-called hiatus in recent global mean surface warming fails to be detected as a shift in the rate of temperature rise but is instead consistent with steady increase since the 1960s/1970s. Our method also supports the hypothesis that the Pacific decadal oscillation behaves as a short-memory process rather than forced mean shifts as previously suggested. These examples demonstrate the usefulness of the proposed approach for change detection and for avoiding the most pervasive types of mistake in the detection of climate change.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Claudie Beaulieu, beaulieu@ucsc.edu

Abstract

The detection of climate change and its attribution to the corresponding underlying processes is challenging because signals such as trends and shifts are superposed on variability arising from the memory within the climate system. Statistical methods used to characterize change in time series must be flexible enough to distinguish these components. Here we propose an approach tailored to distinguish these different modes of change by fitting a series of models and selecting the most suitable one according to an information criterion. The models involve combinations of a constant mean or a trend superposed to a background of white noise with or without autocorrelation to characterize the memory, and are able to detect multiple changepoints in each model configuration. Through a simulation study on synthetic time series, the approach is shown to be effective in distinguishing abrupt changes from trends and memory by identifying the true number and timing of abrupt changes when they are present. Furthermore, the proposed method is better performing than two commonly used approaches for the detection of abrupt changes in climate time series. Using this approach, the so-called hiatus in recent global mean surface warming fails to be detected as a shift in the rate of temperature rise but is instead consistent with steady increase since the 1960s/1970s. Our method also supports the hypothesis that the Pacific decadal oscillation behaves as a short-memory process rather than forced mean shifts as previously suggested. These examples demonstrate the usefulness of the proposed approach for change detection and for avoiding the most pervasive types of mistake in the detection of climate change.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Claudie Beaulieu, beaulieu@ucsc.edu
Save
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, https://doi.org/10.1109/TAC.1974.1100705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, T., J. Carstensen, E. Hernández-García, and C. M. Duarte, 2009: Ecological thresholds and regime shifts: Approaches to identification. Trends Ecol. Evol., 24, 4957, https://doi.org/10.1016/j.tree.2008.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaulieu, C., O. Seidou, T. B. M. J. Ouarda, X. Zhang, G. Boulet, and A. Yagouti, 2008: Intercomparison of homogenization techniques for precipitation data. Water Resour. Res., 44, W02425, https://doi.org/10.1029/2006WR005615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaulieu, C., J. Chen, and J. L. Sarmiento, 2012: Change-point analysis as a tool to detect abrupt climate variations. Philos. Trans. Roy. Soc., 370A, 12281249, https://doi.org/10.1098/rsta.2011.0383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaulieu, C., and Coauthors, 2016: Marine regime shifts in ocean biogeochemical models: A case study in the Gulf of Alaska. Biogeosciences, 13, 45334553, https://doi.org/10.5194/bg-13-4533-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boulton, C. A., and T. M. Lenton, 2015: Slowing down of North Pacific variability and its implications for abrupt ecosystem change. Proc. Natl. Acad. Sci. USA, 112, 11 49611 501, https://doi.org/10.1073/pnas.1501781112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnham, K. P., and D. R. Anderson, 2002: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. Springer, 488 pp.

  • Cahill, N., S. Rahmstorf, and A. C. Parnell, 2015: Change points of global temperature. Environ. Res. Lett., 10, 084002, https://doi.org/10.1088/1748-9326/10/8/084002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chatfield, C., 2003: The Analysis of Time Series: An Introduction. 7th ed. Chapman and Hall, 352 pp.

    • Crossref
    • Export Citation
  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, https://doi.org/10.1002/qj.2297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., A. T. Blaker, S. A. Josey, A. J. G. Nurser, B. Sinha, and M. A. Balmaseda, 2014: Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett., 41, 78687874, https://doi.org/10.1002/2014GL061456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., and Coauthors, 2015: Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl. Acad. Sci. USA, 112, E5777E5786, https://doi.org/10.1073/pnas.1511451112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faghmous, J. H., and V. Kumar, 2014: A big data guide to understanding climate change: The case for theory-guided data science. Big Data, 2, 155163, https://doi.org/10.1089/big.2014.0026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, part II application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2012: Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J. Climate, 25, 41724183, https://doi.org/10.1175/JCLI-D-11-00293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and Coauthors, 2016: Making sense of the early-2000s warming slowdown. Nat. Climate Change, 6, 224228, https://doi.org/10.1038/nclimate2938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gazeaux, J., E. Flaounas, P. Naveau, and A. Hannart, 2011: Inferring change points and nonlinear trends in multivariate time series: Application to west African monsoon onset timings estimation. J. Geophys. Res., 116, D05101, https://doi.org/10.1029/2010JD014723.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254, http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter02_FINAL.pdf.

  • Hasselmann, K., 1976: Stochastic climate models Part I. Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • Haynes, K., I. A. Eckley, and P. Fearnhead, 2017: Computationally efficient changepoint detection for a range of penalties. J. Comput. Graph. Stat., 26, 134143, https://doi.org/10.1080/10618600.2015.1116445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, M., and R. Knutti, 2014: Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci., 7, 651656, https://doi.org/10.1038/ngeo2228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, G. S., and J. J. Kennedy, 2017: Sensitivity of attribution of anthropogenic near-surface warming to observational uncertainty. J. Climate, 30, 46774691, https://doi.org/10.1175/JCLI-D-16-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P., 2016: The reliability of global and hemispheric surface temperature records. Adv. Atmos. Sci., 33, 269282, https://doi.org/10.1007/s00376-015-5194-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, https://doi.org/10.1029/2011JD017139.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., R. W. Knight, and B. Baker, 2000: The record breaking global temperatures of 1997 and 1998: Evidence for an increase in the rate of global warming? Geophys. Res. Lett., 27, 719722, https://doi.org/10.1029/1999GL010877.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, https://doi.org/10.1126/science.aaa5632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kellogg, W. W., 1993: An apparent moratorium on the greenhouse warming due to the deep ocean. Climatic Change, 25, 8588, https://doi.org/10.1007/BF01094085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and Coauthors, 2017: A call for new approaches to quantifying biases in observations of sea surface temperature. Bull. Amer. Meteor. Soc., 98, 16011616, https://doi.org/10.1175/BAMS-D-15-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killick, R., P. Fearnhead, and I. A. Eckley, 2012: Optimal detection of changepoints with a linear computational cost. J. Amer. Stat. Assoc., 107, 15901598, https://doi.org/10.1080/01621459.2012.737745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killick, R., C. Beaulieu, and S. Taylor, 2016: EnvCpt: Detection of structural changes in climate and environment time series. R package version 0.1, https://cran.r-project.org/package=EnvCpt.

  • Knutson, T. R., R. Zhang, and L. H. Horowitz, 2016: Prospects for a prolonged slowdown in global warming in the early 21st century. Nat. Commun., 7, 13676, https://doi.org/10.1038/ncomms13676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J. L., and D. H. Rind, 2009: How will Earth’s surface temperature change in future decades? Geophys. Res. Lett., 36, L15708, https://doi.org/10.1029/2009GL038932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenton, T. M., 2011: Early warning of climate tipping points. Nat. Climate Change, 1, 201209, https://doi.org/10.1038/nclimate1143.

  • Lenton, T. M., V. Dakos, S. Bathiany, and M. Scheffer, 2017: Observed trends in the magnitude and persistence of monthly temperature variability. Sci. Rep., 7, 5940, https://doi.org/10.1038/s41598-017-06382-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewandowsky, S., N. Oreskes, J. S. Risbey, B. R. Newell, and M. Smithson, 2015: Seepage: Climate change denial and its effect on the scientific community. Global Environ. Change, 33, 113, https://doi.org/10.1016/j.gloenvcha.2015.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewandowsky, S., J. S. Risbey, and N. Oreskes, 2016: The “pause” in global warming: Turning a routine fluctuation into a problem for science. Bull. Amer. Meteor. Soc., 97, 723733, https://doi.org/10.1175/BAMS-D-14-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J. Climate, 28, 931951, https://doi.org/10.1175/JCLI-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Løvsletten, O., and M. Rypdal, 2016: Statistics of regional surface temperatures after 1900: Long-range versus short-range dependence and significance of warming trends. J. Climate, 29, 40574068, https://doi.org/10.1175/JCLI-D-15-0437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Q., R. Lund, and T. C. M. Lee, 2010: An MDL approach to the climate segmentation problem. Ann. Appl. Stat., 4, 299319, https://doi.org/10.1214/09-AOAS289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund, R., and J. Reeves, 2002: Detection of undocumented changepoints: A revision of the two-phase regression model. J. Climate, 15, 25472554, https://doi.org/10.1175/1520-0442(2002)015<2547:DOUCAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marriott, F. H. C., and J. A. Pope, 1954: Bias in the estimation of autocorrelations. Biometrika, 41, 390402, https://doi.org/10.1093/biomet/41.3-4.390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medhaug, I., M. B. Stolpe, E. M. Fischer, and R. Knutti, 2017: Reconciling controversies about the ‘global warming hiatus.’ Nature, 545, 4147, https://doi.org/10.1038/nature22315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., H. Teng, and J. M. Arblaster, 2014: Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Climate Change, 4, 898902, https://doi.org/10.1038/nclimate2357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Mustin, K., C. Dytham, T. G. Benton, J. M. J. Travis, and J. Watson, 2013: Red noise increases extinction risk during rapid climate change. Diversity Distrib., 19, 815824, https://doi.org/10.1111/ddi.12038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orcutt, G. H., and H. S. Winokur Jr., 1969: First order autoregression: Inference, estimation, and prediction. Econometrica, 37, 114, https://doi.org/10.2307/1909199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poppick, A., E. J. Moyer, and M. L. Stein, 2017: Estimating trends in the global mean temperature record. Adv. Stat. Climatol. Meteor. Oceanogr., 3, 3353, https://doi.org/10.5194/ascmo-3-33-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., G. Foster, and N. Cahill, 2017: Global temperature evolution: Recent trends and some pitfalls. Environ. Res. Lett., 12, 054001, https://doi.org/10.1088/1748-9326/aa6825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajaratnam, B., J. Romano, M. Tsiang, and N. S. Diffenbaugh, 2015: Debunking the climate hiatus. Climatic Change, 133, 129140, https://doi.org/10.1007/s10584-015-1495-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, J., J. Chen, X. L. Wang, R. Lund, and Q. Lu, 2007: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteor. Climatol., 46, 900915, https://doi.org/10.1175/JAM2493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., S. Lewandowsky, C. Langlais, D. P. Monselesan, T. J. O’Kane, and N. Oreskes, 2014: Well-estimated global surface warming in climate projections selected for ENSO phase. Nat. Climate Change, 4, 835840, https://doi.org/10.1038/nclimate2310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robbins, M. W., C. M. Gallagher, and R. B. Lund, 2016: A general regression changepoint test for time series data. J. Amer. Stat. Assoc., 111, 670683, https://doi.org/10.1080/01621459.2015.1029130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., 2004: A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31, L09204, https://doi.org/10.1029/2004GL019448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., 2006: Use of prewhitening in climate regime shift detection. Geophys. Res. Lett., 33, L12707, https://doi.org/10.1029/2006GL025904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohde, R., and Coauthors, 2013: A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinf. Geostat. Overview, 1 (1), https://doi.org/10.4172/2327-4581.1000101.

    • Crossref
    • Export Citation
  • Rudnick, D. L., and R. E. Davis, 2003: Red noise and regime shifts. Deep-Sea Res. I, 50, 691699, https://doi.org/10.1016/S0967-0637(03)00053-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruggieri, E., 2013: A Bayesian approach to detecting change points in climatic records. Int. J. Climatol., 33, 520528, https://doi.org/10.1002/joc.3447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2014: Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 7, 185189, https://doi.org/10.1038/ngeo2098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., D. T. Shindell, and K. Tsigaridis, 2014: Reconciling warming trends. Nat. Geosci., 7, 158160, https://doi.org/10.1038/ngeo2105.

  • Schwarz, G., 1978: Estimating the dimension of a model. Ann. Stat., 6, 461464, https://doi.org/10.1214/aos/1176344136.

  • Seidel, D. J., and J. R. Lanzante, 2004: An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. J. Geophys. Res., 109, D14108, https://doi.org/10.1029/2003JD004414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidou, O., and T. B. M. J. Ouarda, 2007: Recursion-based multiple changepoint detection in multiple linear regression and application to river streamflows. Water Resour. Res., 43, W07404, https://doi.org/10.1029/2006WR005021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serinaldi, F., and C. G. Kilsby, 2016: The importance of prewhitening in change point analysis under persistence. Stochastic Environ. Res. Risk Assess., 30, 763777, https://doi.org/10.1007/s00477-015-1041-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. R. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical Merged Land–Ocean Surface Temperature Analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. J. Kennedy, J. M. Wallace, and P. D. Jones, 2008: A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 453, 646649, https://doi.org/10.1038/nature06982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomé, A. R., and P. M. A. Miranda, 2004: Piecewise linear fitting and trend changing points of climate parameters. Geophys. Res. Lett., 31, L02207, https://doi.org/10.1029/2003GL019100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2015: Has there been a hiatus? Science, 349, 691692, https://doi.org/10.1126/science.aac9225.

  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, https://doi.org/10.1002/2013EF000165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2010: Mechanisms of climate variability from years to decades. Stochastic Physics and Climate Modelling, T. Palmer and P. Williams, Eds., Cambridge University Press, 1−34.

  • von Storch, H., 1999: Misuses of statistical analysis in climate research. Analysis of Climate Variability, H. von Storch and A. Navarra, Eds., Springer, 11–26.

    • Crossref
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 455 pp.

    • Crossref
    • Export Citation
  • Vose, R. S., and Coauthors, 2012: NOAA’s Merged Land–Ocean Surface Temperature Analysis. Bull. Amer. Meteor. Soc., 93, 16771685, https://doi.org/10.1175/BAMS-D-11-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., J. Huang, Y. He, and Y. Guan, 2014: Combined effects of the Pacific decadal oscillation and El Nino-Southern Oscillation on global land dry-wet changes. Sci. Rep., 4, 6651, https://doi.org/10.1038/srep06651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008: Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteor. Climatol., 47, 24232444, https://doi.org/10.1175/2008JAMC1741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Q. H. Wen, and Y. Wu, 2007: Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteor. Climatol., 46, 916931, https://doi.org/10.1175/JAM2504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., H. Chen, Y. Wu, Y. Feng, and Q. Pu, 2010: New techniques for the detection and adjustment of shifts in daily precipitation data series. J. Appl. Meteor. Climatol., 49, 24162436, https://doi.org/10.1175/2010JAMC2376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1999: The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull. Amer. Meteor. Soc., 80, 245255, https://doi.org/10.1175/1520-0477(1999)080<0245:TIOSCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, N., M. Ding, Y. Huang, Z. Fu, E. Xoplaki, and J. Luterbacher, 2015: On the long-term climate memory in the surface air temperature records over Antarctica: A nonnegligible factor for trend evaluation. J. Climate, 28, 59225934, https://doi.org/10.1175/JCLI-D-14-00733.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N. R., and D. O. Siegmund, 2007: A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics, 63, 2232, https://doi.org/10.1111/j.1541-0420.2006.00662.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3280 1314 78
PDF Downloads 2166 467 49