• Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, https://doi.org/10.1175/2007JTECHA1053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, M., and A. D. Del Genio, 2006: Composite analysis of winter cyclones in a GCM: Influence on climatological humidity. J. Climate, 19, 16521672, https://doi.org/10.1175/JCLI3690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, M., G. Tselioudis, and W. B. Rossow, 2016: A new climatology for investigating storm influences in and on the extratropics. J. Appl. Meteor. Climatol., 55, 12871303, https://doi.org/10.1175/JAMC-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2015: Clouds, circulation, and climate sensitivity. Nat. Geosci., 8, 261268, https://doi.org/10.1038/ngeo2398.

  • Booth, J. F., C. M. Naud, and A. D. Del Genio, 2013: Diagnosing warm frontal cloud formation in a GCM: A novel approach using conditional subsetting. J. Climate, 26, 58275845, https://doi.org/10.1175/JCLI-D-12-00637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., C. M. Naud, and J. Willison, 2018: Evaluation of extratropical cyclone precipitation in the North Atlantic basin: An analysis of ERA-Interim, WRF, and two CMIP5 models. J. Climate, 31, 23452360, https://doi.org/10.1175/JCLI-D-17-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606/Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Boutle, I. A., S. E. Belcher, and R. S. Plant, 2011: Moisture transport in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 137, 360373, https://doi.org/10.1002/qj.783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 2341, https://doi.org/10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and S. Song, 2006: The seasonal cycles in the distribution of precipitation around cyclones in the western North Pacific and Atlantic. J. Atmos. Sci., 63, 815839, https://doi.org/10.1175/JAS3661.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and A. D. Del Genio, 2009: Evaluation of tropical cloud regimes in observations and a general circulation model. Climate Dyn., 32, 355369, https://doi.org/10.1007/s00382-008-0386-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, https://doi.org/10.1175/MWR-D-13-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crespo, J. A., and D. J. Posselt, 2016: A-Train-based case study of stratiform–convective transition within a warm conveyor belt. Mon. Wea. Rev., 144, 20692083, https://doi.org/10.1175/MWR-D-15-0435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, https://doi.org/10.1175/BAMS-D-14-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation systems. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structures in midlatitude cyclones. J. Climate, 20, 233253, https://doi.org/10.1175/JCLI3998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Recent improvements in the MODIS cloud mask. J. Atmos. Oceanic Technol., 25, 10571072, https://doi.org/10.1175/2008JTECHA1052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govekar, P. D., C. Jakob, and J. Catto, 2014: The relationship between clouds and dynamics in Southern Hemisphere extratropical cyclones in the real world and a climate model. J. Geophys. Res. Atmos., 119, 66096628, https://doi.org/10.1002/2013JD020699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5, 3765, https://doi.org/10.1017/S1350482798000553.

  • Houze, R. A., Jr., and P. V. Hobbs, 1982: Organization and structures of precipitating cloud systems. Adv. Geophys., 24, 225315, https://doi.org/10.1016/S0065-2687(08)60521-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and D. T. Bolvin, 2009: TRMM and other data precipitation data set documentation. Laboratory for Atmospheres, NASA Goddard Space Flight Center and Science Systems and Applications, 20 pp., https://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7.pdf.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442458, https://doi.org/10.1109/TGRS.2002.808226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, 2013: Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens., 51, 38263852, https://doi.org/10.1109/TGRS.2012.2227333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., T. Woolings, K. Hodges, and G. Masato, 2014: Extratropical cyclones in a warmer, moister climate: A recent Atlantic analogue. Geophys. Res. Lett., 41, 85948601, https://doi.org/10.1002/2014GL062186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, C.-G., and E. K. M. Chang, 2017: Impacts of storm track variations on winter time extreme weather events over the continental United States. J. Climate, 30, 46014624, https://doi.org/10.1175/JCLI-D-16-0560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, https://doi.org/10.1029/2009JD013422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47, 11751198, https://doi.org/10.1175/2007JAMC1705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. D. Del Genio, M. Bauer, and W. Kovari, 2010: Cloud vertical distribution across warm and cold fronts in CloudSat-CALIPSO data and a general circulation model. J. Climate, 23, 33973415, https://doi.org/10.1175/2010JCLI3282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., D. J. Posselt, and S. C. van den Heever, 2012: Observational analysis of cloud and precipitation in midlatitude cyclones: Northern versus Southern Hemisphere warm fronts. J. Climate, 25, 51355151, https://doi.org/10.1175/JCLI-D-11-00569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, D. J. Posselt, and S. C. van den Heever, 2013: Multiple satellite observations of cloud cover in extratropical cyclones. J. Geophys. Res. Atmos., 118, 99829996, https://doi.org/10.1002/jgrd.50718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., D. J. Posselt, and S. C. van den Heever, 2015: A CloudSat-CALIPSO view of cloud and precipitation properties across cold fronts over the global oceans. J. Climate, 28, 67436762, https://doi.org/10.1175/JCLI-D-15-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2016: The relationship between boundary later stability and cloud cover in the post-cold-frontal region. J. Climate, 29, 81298149, https://doi.org/10.1175/JCLI-D-15-0700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, https://doi.org/10.1175/JCLI-D-11-00705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and M. Sprenger, 2016: On the relationship between extratropical cyclone precipitation and intensity. Geophys. Res. Lett., 43, 17521758, https://doi.org/10.1002/2016GL068018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithm and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, https://doi.org/10.1109/TGRS.2002.808301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polly, J. B., and W. B. Rossow, 2016: Cloud radiative effects and precipitation in extratropical cyclones. J. Climate, 29, 64836507, https://doi.org/10.1175/JCLI-D-15-0857.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446, https://doi.org/10.1175/2010MWR3294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemm, S., H. Wernli, and L. Papritz, 2013: Warm conveyor belts in idealized moist baroclinic wave simulations. J. Atmos. Sci., 70, 627652, https://doi.org/10.1175/JAS-D-12-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and J. A. T. Bye, 2012: Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Climate, 25, 19451962, https://doi.org/10.1175/JCLI-D-11-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., S. Wong, and E. J. Fetzer, 2015: Cloud regime evolution in the Indian monsoon intraseasonal oscillation: Connection to large-scale dynamical conditions and the atmospheric water budget. Geophys. Res. Lett., 42, 94659472, https://doi.org/10.1002/2015GL066353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., E. J. Fetzer, S. Wong, B. H. Kahn, and Q. Yue, 2016: Validation of MODIS cloud mask and multi-layer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications. J. Geophys. Res. Atmos., 121, 11 62011 635, https://doi.org/10.1002/2016JD025239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, S., and A. Behrangi, 2018: Regime-dependent differences in surface freshwater exchange estimates over the ocean. Geophys. Res. Lett., 45, 955963, https://doi.org/10.1002/2017GL075567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, S., E. J. Fetzer, B. H. Kahn, B. Tian, B. H. Lambrigtsen, and H. Ye, 2011a: Closing the global water vapor budget with AIRS water vapor, MERRA reanalysis, TRMM and GPCP precipitation, and GSSTF surface evaporation. J. Climate, 24, 63076321, https://doi.org/10.1175/2011JCLI4154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, S., E. J. Fetzer, B. Tian, B. Lambrigtsen, and H. Ye, 2011b: The apparent water vapor sinks and heat sources associated with the intraseasonal oscillation of the Indian summer monsoon. J. Climate, 24, 44664479, https://doi.org/10.1175/2011JCLI4076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, S., A. D. Del Genio, T. Wang, B. H. Kahn, E. J. Fetzer, and T. S. L’Ecuyer, 2016: Responses of tropical ocean clouds and precipitation to the large-scale circulation: Atmospheric water budget-related phase space and dynamical regimes. J. Climate, 29, 71277142, https://doi.org/10.1175/JCLI-D-15-0712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., S. Wong, T. Wang, and G. J. Huffman, 2018: Moist convection: A key to tropical wave–moisture interaction in Indian monsoon intraseasonal oscillation. Climate Dyn., 51, 36733684, https://doi.org/10.1007/s00382-018-4103-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yettella, V., and J. E. Kay, 2017: How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble. Climate Dyn., 49, 17651781, https://doi.org/10.1007/s00382-016-3410-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 3 3 3

Coupling of Precipitation and Cloud Structures in Oceanic Extratropical Cyclones to Large-Scale Moisture Flux Convergence

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • | 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Restricted access

Abstract

Precipitation (from TMPA) and cloud structures (from MODIS) in extratropical cyclones (ETCs) are modulated by phases of large-scale moisture flux convergence (from MERRA-2) in the sectors of ETCs, which are studied in a new coordinate system with directions of both surface warm fronts (WFs) and surface cold fronts (CFs) fixed. The phase of moisture flux convergence is described by moisture dynamical convergence Qcnvg and moisture advection Qadvt. Precipitation and occurrence frequencies of deep convective clouds are sensitive to changes in Qcnvg, while moisture tendency is sensitive to changes in Qadvt. Increasing Qcnvg and Qadvt during the advance of the WF is associated with increasing occurrences of both deep convective and high-level stratiform clouds. A rapid decrease in Qadvt with a relatively steady Qcnvg during the advance of the CF is associated with high-level cloud distribution weighting toward deep convective clouds. Behind the CF (cold sector or area with polar air intrusion), the moisture flux is divergent with abundant low- and midlevel clouds. From deepening to decaying stages, the pre-WF and WF sectors experience high-level clouds shifting to more convective and less stratiform because of decreasing Qadvt with relatively steady Qcnvg, and the CF experiences shifting from high-level to midlevel clouds. Sectors of moisture flux divergence are less influenced by cyclone evolution. Surface evaporation is the largest in the cold sector and the CF during the deepening stage. Deepening cyclones are more efficient in poleward transport of water vapor.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sun Wong, sun.wong@jpl.nasa.gov

Abstract

Precipitation (from TMPA) and cloud structures (from MODIS) in extratropical cyclones (ETCs) are modulated by phases of large-scale moisture flux convergence (from MERRA-2) in the sectors of ETCs, which are studied in a new coordinate system with directions of both surface warm fronts (WFs) and surface cold fronts (CFs) fixed. The phase of moisture flux convergence is described by moisture dynamical convergence Qcnvg and moisture advection Qadvt. Precipitation and occurrence frequencies of deep convective clouds are sensitive to changes in Qcnvg, while moisture tendency is sensitive to changes in Qadvt. Increasing Qcnvg and Qadvt during the advance of the WF is associated with increasing occurrences of both deep convective and high-level stratiform clouds. A rapid decrease in Qadvt with a relatively steady Qcnvg during the advance of the CF is associated with high-level cloud distribution weighting toward deep convective clouds. Behind the CF (cold sector or area with polar air intrusion), the moisture flux is divergent with abundant low- and midlevel clouds. From deepening to decaying stages, the pre-WF and WF sectors experience high-level clouds shifting to more convective and less stratiform because of decreasing Qadvt with relatively steady Qcnvg, and the CF experiences shifting from high-level to midlevel clouds. Sectors of moisture flux divergence are less influenced by cyclone evolution. Surface evaporation is the largest in the cold sector and the CF during the deepening stage. Deepening cyclones are more efficient in poleward transport of water vapor.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sun Wong, sun.wong@jpl.nasa.gov
Save