• Abbot, D. S., and E. Tziperman, 2008a: A high latitude convective cloud feedback and equable climates. Quart. J. Roy. Meteor. Soc., 134, 165185, https://doi.org/10.1002/qj.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and E. Tziperman, 2008b: Sea ice, high-latitude convection, and equable climates. Geophys. Res. Lett., 35, L03702, https://doi.org/10.1029/2007GL032286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and E. Tziperman, 2009: Controls on the activation and strength of a high-latitude convective cloud feedback. J. Atmos. Sci., 66, 519529, https://doi.org/10.1175/2008JAS2840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., M. Huber, G. Bousquet, and C. C. Walker, 2009a: High-CO2 cloud radiative forcing feedback over both land and ocean in a global climate model. Geophys. Res. Lett., 36, L05702, https://doi.org/10.1029/2008GL036703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., C. Walker, and E. Tziperman, 2009b: Can a convective cloud feedback help to eliminate winter sea ice at high CO2 concentrations? J. Climate, 22, 57195731, https://doi.org/10.1175/2009JCLI2854.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexeev, V. A., and C. H. Jackson, 2013: Polar amplification: Is atmospheric heat transport important? Climate Dyn., 41, 533547, https://doi.org/10.1007/s00382-012-1601-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N., M. Branson, M. A. Burt, D. S. Abbot, Z. Kuang, D. A. Randall, and E. Tziperman, 2014: Effects of explicit atmospheric convection at high CO2. Proc. Natl. Acad. Sci. USA, 111, 10 94310 948, https://doi.org/10.1073/pnas.1407175111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Cronin, T. W., and E. Tziperman, 2015: Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming. Proc. Natl. Acad. Sci. USA, 112, 11 49011 495, https://doi.org/10.1073/pnas.1510937112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., H. Li, and E. Tziperman, 2017: Suppression of Arctic air formation with climate warming: Investigation with a two-dimensional cloud-resolving model. J. Atmos. Sci., 74, 27172736, https://doi.org/10.1175/JAS-D-16-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J., 1983: On the formation of continental polar air. J. Atmos. Sci., 40, 22782292, https://doi.org/10.1175/1520-0469(1983)040<2278:OTFOCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2002: A simple model of multiple climate regimes. J. Geophys. Res., 107, 4077, https://doi.org/10.1029/2001JD001002.

  • Farrell, B. F., 1990: Equable climate dynamics. J. Atmos. Sci., 47, 29862995, https://doi.org/10.1175/1520-0469(1990)047<2986:ECD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, J. Lu, and G. Masato, 2015: Persistent cold air outbreaks over North America in a warming climate. Environ. Res. Lett., 10, 044001, https://doi.org/10.1088/1748-9326/10/4/044001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic winter warming trend. J. Climate, 30, 49374949, https://doi.org/10.1175/JCLI-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwood, D. R., and S. L. Wing, 1995: Eocene continental climates and latitudinal temperature gradients. Geology, 23, 10441048, https://doi.org/10.1130/0091-7613(1995)023<1044:ECCALT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, M., and R. Caballero, 2011: The early Eocene equable climate problem revisited. Climate Past, 7, 603633, https://doi.org/10.5194/cp-7-603-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E., and W. Lipscomb, 2008: CICE: The Los Alamos Sea Ice Model user’s manual, version 4. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 16 pp.

  • Kato, S., and Coauthors, 2018: Surface irradiances of edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 45014527, https://doi.org/10.1175/JCLI-D-17-0523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, C. M. Bitz, E. Blanchard-Wrigglesworth, A. Gettelman, A. Conley, and D. Bailey, 2012: The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing. J. Climate, 25, 54335450, https://doi.org/10.1175/JCLI-D-11-00622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D. B., D. P. Schrag, and J. G. Anderson, 2002: On the feedback of stratospheric clouds on polar climate. Geophys. Res. Lett., 29, 1556, https://doi.org/10.1029/2002GL014659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and K. A. Emanuel, 2007: The dynamic response of the winter stratosphere to an equable climate surface temperature gradient. J. Climate, 20, 52135228, https://doi.org/10.1175/2007JCLI1556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cyclone-induced upper-ocean mixing and climate: Application to equable climates. J. Climate, 21, 638654, https://doi.org/10.1175/2007JCLI1659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Markwick, P. J., 1994: “Equability,” continentality, and tertiary “climate”: The crocodilian perspective. Geology, 22, 613616, https://doi.org/10.1130/0091-7613(1994)022<0613:ECATCT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markwick, P. J., 1998: Fossil crocodilians as indicators of late Cretaceous and Cenozoic climates: Implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 205271, https://doi.org/10.1016/S0031-0182(97)00108-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J. Geophys. Res., 120, 95399554, https://doi.org/10.1002/2015JD023603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp., www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.

  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., B. Medeiros, and T. Mauritsen, 2014: Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Climate Dyn., 43, 289303, https://doi.org/10.1007/s00382-013-1964-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and Coauthors, 2016: Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: The Larcform 1 single column model intercomparison. J. Adv. Model. Earth Syst., 8, 13451357, https://doi.org/10.1002/2016MS000630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., A. Grübler, and N. Nakicenovic, 2007: Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change, 74, 887935, https://doi.org/10.1016/j.techfore.2006.05.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and H. Płotka, 2015: Physics of changes in synoptic midlatitude temperature variability. J. Climate, 28, 23122331, https://doi.org/10.1175/JCLI-D-14-00632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, https://doi.org/10.1038/nclimate2268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and L. Sun, 2015: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteor. Soc., 96, 14891503, https://doi.org/10.1175/BAMS-D-14-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloan, L. C., J. C. G. Walker, T. C. Moore, D. K. Rea, and J. C. Zachos, 1992: Possible methane-induced polar warming in the early Eocene. Nature, 357, 320322, https://doi.org/10.1038/357320a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramler, K., A. D. D. Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 17471762, https://doi.org/10.1175/2010JCLI3817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, https://doi.org/10.1007/s10584-011-0148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vavrus, S., and D. Waliser, 2008: An improved parameterization for simulating Arctic cloud amount in the CCSM3 climate model. J. Climate, 21, 56735687, https://doi.org/10.1175/2008JCLI2299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vavrus, S., J. Walsh, W. Chapman, and D. Portis, 2006: The behavior of extreme cold air outbreaks under greenhouse warming. Int. J. Climatol., 26, 11331147, https://doi.org/10.1002/joc.1301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, S. L., and D. R. Greenwood, 1993: Fossils and fossil climate: The case for equable continental interiors in the Eocene. Philos. Trans. Roy. Soc. London, 341, 243252, https://doi.org/10.1098/rstb.1993.0109.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 0 0 0

Suppression of Cold Weather Events over High-Latitude Continents in Warm Climates

View More View Less
  • 1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
  • | 2 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 3 Department of Earth and Planetary Sciences, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
Restricted access

Abstract

Recent studies, using Lagrangian single-column atmospheric models, have proposed that in warmer climates more low clouds would form as maritime air masses advect into Northern Hemisphere high-latitude continental interiors during winter (DJF). This increase in low cloud amount and optical thickness could reduce surface radiative cooling and suppress Arctic air formation events, partly explaining both the warm winter high-latitude continental interior climate and frost-intolerant species found there during the Eocene and the positive lapse-rate feedback in future Arctic climate change scenarios. Here the authors examine the robustness of this low-cloud mechanism in a three-dimensional atmospheric model that includes large-scale dynamics. Different warming scenarios are simulated under prescribed CO2 and sea surface temperature, and the sensitivity of winter temperatures and clouds over high-latitude continental interior to mid- and high-latitude sea surface temperatures is examined. Model results show that winter 2-m temperatures on extreme cold days increase about 50% faster than the winter mean temperatures and the prescribed SST. Low cloud fraction and surface longwave cloud radiative forcing also increase in both the winter mean state and on extreme cold days, consistent with previous Lagrangian air-mass studies, but with cloud fraction increasing for different reasons than proposed by previous work. At high latitudes, the cloud longwave warming effect dominates the shortwave cooling effect, and the net cloud radiative forcing at the surface tends to warm high-latitude land but cool midlatitude land. This could contribute to the reduced meridional temperature gradient in warmer climates and help explain the greater warming of winter cold extremes relative to winter mean temperatures.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zeyuan Hu, zeyuan_hu@fas.harvard.edu

Abstract

Recent studies, using Lagrangian single-column atmospheric models, have proposed that in warmer climates more low clouds would form as maritime air masses advect into Northern Hemisphere high-latitude continental interiors during winter (DJF). This increase in low cloud amount and optical thickness could reduce surface radiative cooling and suppress Arctic air formation events, partly explaining both the warm winter high-latitude continental interior climate and frost-intolerant species found there during the Eocene and the positive lapse-rate feedback in future Arctic climate change scenarios. Here the authors examine the robustness of this low-cloud mechanism in a three-dimensional atmospheric model that includes large-scale dynamics. Different warming scenarios are simulated under prescribed CO2 and sea surface temperature, and the sensitivity of winter temperatures and clouds over high-latitude continental interior to mid- and high-latitude sea surface temperatures is examined. Model results show that winter 2-m temperatures on extreme cold days increase about 50% faster than the winter mean temperatures and the prescribed SST. Low cloud fraction and surface longwave cloud radiative forcing also increase in both the winter mean state and on extreme cold days, consistent with previous Lagrangian air-mass studies, but with cloud fraction increasing for different reasons than proposed by previous work. At high latitudes, the cloud longwave warming effect dominates the shortwave cooling effect, and the net cloud radiative forcing at the surface tends to warm high-latitude land but cool midlatitude land. This could contribute to the reduced meridional temperature gradient in warmer climates and help explain the greater warming of winter cold extremes relative to winter mean temperatures.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zeyuan Hu, zeyuan_hu@fas.harvard.edu
Save