• Alexander, M. A., J. D. Scott, and C. Deser, 2000: Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res., 105, 16 82316 842, https://doi.org/10.1029/2000JC900074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnhart, K. R., C. R. Miller, I. Overeem, and J. E. Kay, 2016: Mapping the future expansion of Arctic open water. Nat. Climate Change, 6, 280285, https://doi.org/10.1038/nclimate2848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., D. S. Battisti, R. E. Moritz, and J. A. Beesley, 1996: Low frequency variability in the Arctic atmosphere, ice, and upper-ocean climate system. J. Climate, 9, 394408, https://doi.org/10.1175/1520-0442(1996)009<0394:LFVITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., and C. M. Bitz, 2014: Characteristics of Arctic sea-ice thickness variability in GCMs. J. Climate, 27, 82448258, https://doi.org/10.1175/JCLI-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011a: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, https://doi.org/10.1175/2010JCLI3775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., C. M. Bitz, and M. M. Holland, 2011b: Influence of initial conditions and climate forcing on predicting Arctic sea ice. Geophys. Res. Lett., 38, L18503, https://doi.org/10.1029/2011GL048807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., and D. Giannakis, 2015: Sea-ice reemergence in a model hierarchy. Geophys. Res. Lett., 42, 53375345, https://doi.org/10.1002/2015GL063972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., D. Giannakis, and A. J. Majda, 2015: Arctic sea ice re-emergence: The role of large-scale oceanic and atmospheric variability. J. Climate, 28, 54775509, https://doi.org/10.1175/JCLI-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., R. Msadek, M. Winton, G. A. Vecchi, R. Gudgel, A. Rosati, and X. Yang, 2017: Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophys. Res. Lett., 44, 49534964, https://doi.org/10.1002/2017GL073155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., R. Msadek, M. Winton, G. Vecchi, X. Yang, A. Rosati, and R. Gudgel, 2018: Regional Arctic sea–ice prediction: Potential versus operational seasonal forecast skill. Climate Dyn., https://doi.org/10.1007/s00382-018-4288-y, in press.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., and C. L. Parkinson, 2012: Arctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 881889, https://doi.org/10.5194/tc-6-881-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., E. Blanchard-Wrigglesworth, C. M. Bitz, C. Ladd, and P. J. Stabeno, 2016: Diagnostic sea ice predictability in the pan-Arctic and U.S. Arctic regional seas. Geophys. Res. Lett., 43, 11 68811 696, https://doi.org/10.1002/2016GL070735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., and D. Salas-Mélia, 2012: The role of sea ice thickness distribution in the Arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. J. Climate, 25, 30253038, https://doi.org/10.1175/JCLI-D-11-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., and Coauthors, 2017: Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project. Climate Dyn., 49, 11071136, https://doi.org/10.1007/s00382-016-2985-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J., 2000: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, updated 2015, version 3.1. National Snow and Ice Data Center, accessed 9 September 2018, https://doi.org/10.5067/7Q8HCCWS4I0R.

    • Crossref
    • Export Citation
  • Day, J. J., S. Tietsche, and E. Hawkins, 2014: Pan-Arctic and regional sea ice predictability: Initialization month dependence. J. Climate, 27, 43714390, https://doi.org/10.1175/JCLI-D-13-00614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, H., F. J. Doblas-Reyes, J. García-Serrano, V. Guemas, Y. Souffelt, and B. Wouters, 2012: Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations. Climate Dyn., 39, 20132023, https://doi.org/10.1007/s00382-011-1285-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guemas, V., M. Chevallier, M. Déqué, O. Bellprat, and F. Doblas-Reyes, 2016: Impact of sea ice initialization on sea ice and atmosphere prediction skill on seasonal timescales. Geophys. Res. Lett., 43, 38893896, https://doi.org/10.1002/2015GL066626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haas, C., and P. Jochmann, 2003: Continuous EM and ULS thickness profiling in support of ice force measurements. Proc. 17th Int. Conf. on Port and Ocean Engineering under Arctic Conditions, Trondheim, Norway, Port and Ocean Engineering under Arctic Conditions, 849856, http://epic.awi.de/9105/1/Haa2003c.pdf.

  • Hawkins, E., S. Tietsche, J. J. Day, N. Melia, K. Haines, and S. Keeley, 2015: Aspects of designing and evaluating seasonal-to-interannual Arctic sea-ice prediction systems. Quart. J. Roy. Meteor. Soc., 142, 672683, https://doi.org/10.1002/qj.2643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, and S. Vavrus, 2011: Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3. Climate Dyn., 36, 12391253, https://doi.org/10.1007/s00382-010-0792-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., E. Blanchard-Wrigglesworth, J. Kay, and S. Vavrus, 2013: Initial-value predictability of Antarctic sea ice in the Community Climate System Model 3. Geophys. Res. Lett., 40, 21212124, https://doi.org/10.1002/grl.50410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanova, N., O. M. Johannessen, L. T. Pedersen, and R. T. Tonboe, 2014: Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans. Geosci. Remote Sens., 52, 72337246, https://doi.org/10.1109/TGRS.2014.2310136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jahn, A., J. E. Kay, M. M. Holland, and D. M. Hall, 2016: How predictable is the timing of a summer ice-free Arctic? Geophys. Res. Lett., 43, 91139120, https://doi.org/10.1002/2016GL070067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, C. M., P. Lemke, and T. P. Barnett, 1985: Linear prediction of sea ice anomalies. J. Geophys. Res., 90, 56655675, https://doi.org/10.1029/JD090iD03p05665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimmritz, M., F. Counillon, C. M. Bitz, F. Massonnet, I. Bethke, and Y. Gao, 2018: Optimising assimilation of sea ice concentration in an Earth system model with a multicategory sea ice model. Tellus, 70A, 1435945, https://doi.org/10.1080/16000870.2018.1435945.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2004: Annual cycles of multiyear sea ice coverage of the Arctic Ocean: 1999–2003. J. Geophys. Res., 109, C11004, https://doi.org/10.1029/2003JC002238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamers, M., A. Pristupa, B. Amelung, and M. Knol, 2016: The changing role of environmental information in Arctic marine governance. Curr. Opin. Environ. Sustainability, 18, 4955, https://doi.org/10.1016/j.cosust.2015.08.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemke, P., E. W. Trinkl, and K. Hasselmann, 1980: Stochastic dynamic analysis of polar sea ice variability. J. Phys. Oceanogr., 10, 21002120, https://doi.org/10.1175/1520-0485(1980)010<2100:SDAOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindell, D. B., and D. G. Long, 2016: Multiyear Arctic ice classification using ASCAT and SSMIS. Remote Sens., 8, 294, https://doi.org/10.3390/rs8040294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, and H. Goosse, 2015: Prospects for improved seasonal Arctic sea ice predictions from multivariate data assimilation. Ocean Modell., 88, 1625, https://doi.org/10.1016/j.ocemod.2014.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2013: Climate change projections in CESM1(CAM5) compared to CCSM4. J. Climate, 26, 62876308, https://doi.org/10.1175/JCLI-D-12-00572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., F. Fetterer, J. S. Stewart, and S. Helfrich, 2015: How do sea ice concentrations from operational data compare with passive microwave estimates? Implications for improved model evaluations and forecasting. Ann. Glaciol., 56, 332340, https://doi.org/10.3189/2015AoG69A694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., G. A. Vecchi, M. Winton, and R. G. Gudgel, 2014: Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys. Res. Lett., 41, 52085215, https://doi.org/10.1002/2014GL060799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and D. J. Cavalieri, 2012: Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 871880, https://doi.org/10.5194/tc-6-871-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Q., Z. Song, and F. Qiao, 2015: Assessment of sea ice simulations in the CMIP5 models. Cryosphere, 9, 399409, https://doi.org/10.5194/tc-9-399-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. C. Fyfe, G. M. Flato, V. V. Kharin, and W. J. Merryfield, 2013: Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys. Res. Lett., 40, 529534, https://doi.org/10.1002/grl.50129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, L. C., and S. R. Stephenson, 2013: New trans-Arctic shipping routes navigable by midcentury. Proc. Natl. Acad. Sci. USA, 110, 48714872, https://doi.org/10.1073/pnas.1214212110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., and L. A. Mysak, 2000: Is there a dominant timescale of natural climate variability in the Arctic? J. Climate, 13, 34123434, https://doi.org/10.1175/1520-0442(2000)013<3412:ITADTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C.-Y., J. Liu, Y. Hu, R. M. Horton, L. Chen, and X. Cheng, 2016: Assessment of Arctic and Antarctic sea ice predictability in CMIP5 decadal hindcasts. Cryosphere, 10, 24292452, https://doi.org/10.5194/tc-10-2429-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2015: Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl. Acad. Sci. USA, 112, 45704575, https://doi.org/10.1073/pnas.1422296112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-F., C. M. Bitz, J. L. Anderson, N. Collins, J. Hendricks, T. Hoar, K. Raeder, and F. Massonnet, 2018: Insights on Sea Ice Data Assimilation 1 from perfect model observing system simulation experiments. J. Climate, 31, 59115926, https://doi.org/10.1175/JCLI-D-17-0904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zunz, V., H. Goosse, and S. Dubinkina, 2015: Impact of the initialisation on the predictability of the Southern Ocean sea ice at interannual to multi-decadal timescales. Climate Dyn., 44, 22672286, https://doi.org/10.1007/s00382-014-2344-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 11 11 11

Processes Controlling Arctic and Antarctic Sea Ice Predictability in the Community Earth System Model

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
Restricted access

Abstract

Sea ice predictability is a rapidly growing area of research, with most studies focusing on the Arctic. This study offers new insights by comparing predictability between the Arctic and Antarctic sea ice anomalies, focusing on the effects of regional differences in ice thickness and ocean dynamics. Predictability in simulated regional sea ice area and volume is investigated in long control runs of an Earth system model. Sea ice area predictability in the Arctic agrees with results from other studies, with features of decaying initial persistence and reemergence because of ocean mixed layer processes and memory in thick ice. In pan-Arctic averages, sea ice volume and the area covered by thick ice are the best predictors of September area for lead times greater than 2 months. In the Antarctic, area is generally the best predictor of future area for all times of year. Predictability of area in summer differs between the hemispheres because of unique aspects of the coupling between area and volume. Generally, ice volume only adds to the predictability of summer sea ice area in the Arctic. Predictability patterns vary greatly among different regions of the Arctic but share similar seasonality among regions of the Antarctic. Interactive ocean dynamics influence anomaly reemergence differently in the Antarctic than the Arctic, both for the total and regional area. In the Antarctic, ocean dynamics generally decrease the persistence of area anomalies, reducing predictability. In the Arctic, the presence of ocean dynamics improves ice area predictability, mainly through mixed layer depth variability.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ana C. Ordoñez, ordonana@uw.edu

Abstract

Sea ice predictability is a rapidly growing area of research, with most studies focusing on the Arctic. This study offers new insights by comparing predictability between the Arctic and Antarctic sea ice anomalies, focusing on the effects of regional differences in ice thickness and ocean dynamics. Predictability in simulated regional sea ice area and volume is investigated in long control runs of an Earth system model. Sea ice area predictability in the Arctic agrees with results from other studies, with features of decaying initial persistence and reemergence because of ocean mixed layer processes and memory in thick ice. In pan-Arctic averages, sea ice volume and the area covered by thick ice are the best predictors of September area for lead times greater than 2 months. In the Antarctic, area is generally the best predictor of future area for all times of year. Predictability of area in summer differs between the hemispheres because of unique aspects of the coupling between area and volume. Generally, ice volume only adds to the predictability of summer sea ice area in the Arctic. Predictability patterns vary greatly among different regions of the Arctic but share similar seasonality among regions of the Antarctic. Interactive ocean dynamics influence anomaly reemergence differently in the Antarctic than the Arctic, both for the total and regional area. In the Antarctic, ocean dynamics generally decrease the persistence of area anomalies, reducing predictability. In the Arctic, the presence of ocean dynamics improves ice area predictability, mainly through mixed layer depth variability.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ana C. Ordoñez, ordonana@uw.edu
Save