• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., L. Matrosova, C. Penland, J. D. Scott, and P. Chang, 2008: Forecasting Pacific SSTs: Linear inverse model predictions of the PDO. J. Climate, 21, 385402, https://doi.org/10.1175/2007JCLI1849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., 2007: On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J. Climate, 20, 15931599, https://doi.org/10.1175/JCLI4075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., and R. C. Perez, 2015: ENSO and non-ENSO induced charging and discharging of the equatorial Pacific. Climate Dyn., 45, 23092327, https://doi.org/10.1007/s00382-015-2472-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Kallen, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, https://doi.org/10.1002/grl.50382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, https://doi.org/10.1175/BAMS-D-11-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Climate, 15, 34273442, https://doi.org/10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and I. G. Watterson, 2002: Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15, 11591174, https://doi.org/10.1175/1520-0442(2002)015<1159:MOIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2017: Observed El Niño SSTA development and the effects of easterly and westerly wind events in 2014–2015. J. Climate, 30, 15051519, https://doi.org/10.1175/JCLI-D-16-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., P. DiNezio, and C. Deser, 2011: Rethinking the ocean’s role in the Southern Oscillation. J. Climate, 24, 40564072, https://doi.org/10.1175/2011JCLI3973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Dayan, H., J. Vialard, and T. Izumo, 2014: Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Climate Dyn., 43, 13111325, https://doi.org/10.1007/s00382-013-1946-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and J. M. Wallace, 1990: Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J. Climate, 3, 12541281, https://doi.org/10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, https://doi.org/10.1175/JCLI-D-11-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., G. Liguori, N. Schneider, J. C. Furtado, B. T. Anderson, and M. A. Alexander, 2015: ENSO and meridional modes: A null hypothesis for Pacific climate variability. Geophys. Res. Lett., 42, 94409448, https://doi.org/10.1002/2015GL066281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017: Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dyn., 49, 42374261, https://doi.org/10.1007/s00382-017-3575-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, and Y.-H. Tseng, 2015a: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 20172034, https://doi.org/10.1007/s00382-014-2303-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, and Y.-H. Tseng, 2015b: The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J. Geophys. Res. Atmos., 120, 2745, https://doi.org/10.1002/2014JD022221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, Y.-H. Tseng, C. Sun, and F. Xie, 2017: Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events. J. Geophys. Res. Atmos., 122, 279298, https://doi.org/10.1002/2016JD025502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and C. P. Schmertmann, 1994: Assessing forecast skill through cross validation. Wea. Forecasting, 9, 619624, https://doi.org/10.1175/1520-0434(1994)009<0619:AFSTCV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, J. C., E. Di Lorenzo, N. Schneider, and N. A. Bond, 2011: North Pacific decadal variability and climate change in the IPCC AR4 models. J. Climate, 24, 30493067, https://doi.org/10.1175/2010JCLI3584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, J. C., E. Di Lorenzo, B. T. Anderson, and N. Schneider, 2012: Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Climate Dyn., 39, 28332846, https://doi.org/10.1007/s00382-011-1245-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasegawa, T., and K. Hanawa, 2003: Heat content variability related to ENSO events in the Pacific. J. Phys. Oceanogr., 33, 407421, https://doi.org/10.1175/1520-0485(2003)033<0407:HCVRTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA, 113, 20052010, https://doi.org/10.1073/pnas.1514182113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imada, Y., H. Tatebe, M. Watanabe, M. Ishii, and M. Kimoto, 2016: South Pacific influence on the termination of El Niño in 2014. Sci. Rep., 6, 30341, https://doi.org/10.1038/srep30341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, https://doi.org/10.1007/s00382-008-0397-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H. and J. Yu, 2009: Contrasting eastern-Pacific and central-Pacific Types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res., 108, 3079, https://doi.org/10.1029/2000JC000736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. C. Mo, 1999: Interannual and intraseasonal variability in the Southern Hemisphere. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 307–336.

    • Crossref
    • Export Citation
  • Kim, S. T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, https://doi.org/10.1029/2012GL052006.

  • Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54, 753767, https://doi.org/10.1175/1520-0469(1997)054<0753:ATFTLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J., F. Jin, and S. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, W. C., M. Herzog, and H. F. Graf, 2017: ENSO forecasts near the spring predictability barrier and possible reasons for the recently reduced predictability. J. Climate, 31, 815838, https://doi.org/10.1175/JCLI-D-17-0180.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. A. Knaff, 2000: How much skill was there in forecasting the very strong 1997–98 El Niño? Bull. Amer. Meteor. Soc., 81, 21072120, https://doi.org/10.1175/1520-0477(2000)081<2107:HMSWTI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S., and B. Kirtman, 2014: The Pacific meridional mode as an ENSO precursor and predictor in the North American Multimodel Ensemble. J. Climate, 27, 70187032, https://doi.org/10.1175/JCLI-D-14-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S., and B. Kirtman, 2015: An alternate approach to ensemble ENSO forecast spread: Application to the 2014 forecast. Geophys. Res. Lett., 42, 94119415, https://doi.org/10.1002/2015GL066173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., T. P. Barnett, M. A. Cane, M. Flügel, N. E. Graham, H. von Storch, J.-S. Xu, and S. E. Zebiak, 1994: A review of ENSO prediction studies. Climate Dyn., 9, 167179, https://doi.org/10.1007/BF00208250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liguori, G., and E. Di Lorenzo, 2018: Meridional modes and increasing Pacific decadal variability under anthropogenic forcing. Geophys. Res. Lett., 45, 983991, https://doi.org/10.1002/2017GL076548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C.-Y., J.-Y. Yu, and H.-H. Hsu, 2015: CMIP5model simulations of the Pacific meridional mode and its connection to the two types of ENSO. Int. J. Climatol., 35, 23522358, https://doi.org/10.1002/joc.4130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, https://doi.org/10.1175/2007JCLI2048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, https://doi.org/10.1029/2005RG000172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., and M. J. McPhaden, 2014: Assessing the twenty-first-century shift in ENSO variability in terms of the Bjerknes stability index. J. Climate, 27, 25772587, https://doi.org/10.1175/JCLI-D-13-00438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, https://doi.org/10.1029/2003GL016872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., H. Loon, and J. M. Arblaster, 2017: The role of the Southern Hemisphere semiannual oscillation in the development of a precursor to central and eastern Pacific Southern Oscillation warm events. Geophys. Res. Lett., 44, 69596965, https://doi.org/10.1002/2017GL073832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., J. Su, R. Zhang, and X. Rong, 2015: What hindered the El Niño pattern in 2014? Geophys. Res. Lett., 42, 67626770, https://doi.org/10.1002/2015GL064899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., J. Su, and R. Zhang, 2017: Impact of the South and North Pacific meridional modes on the El Niño–Southern Oscillation: Observational analysis and comparison. J. Climate, 30, 17051720, https://doi.org/10.1175/JCLI-D-16-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyakoda, K., G. D. Hembree, R. F. Strickler, and I. Shulman, 1972: Cumulative results of extended forecast experiments I. Model performance for winter cases. Mon. Wea. Rev., 100, 836855, https://doi.org/10.1175/1520-0493(1972)100<0836:CROEFE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., 2013: Origins of tropical Pacific decadal variability: Role of stochastic atmospheric forcing from the South Pacific. J. Climate, 26, 97919796, https://doi.org/10.1175/JCLI-D-13-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 3957, https://doi.org/10.1002/joc.3370010106.

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., 2018: Revisiting the Pacific meridional mode. Sci. Rep., 8, 3216, https://doi.org/10.1038/s41598-018-21537-0.

  • Su, J., B. Xiang, B. Wang, and T. Li, 2014: Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys. Res. Lett., 41, 90589064, https://doi.org/10.1002/2014GL062380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, E. E., and D. J. Vimont, 2016: Modeling the mechanisms of linear and nonlinear ENSO responses to the Pacific meridional mode. J. Climate, 29, 87458761, https://doi.org/10.1175/JCLI-D-16-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and L. Smith, 2009: Variations in the three-dimensional structure of the atmospheric circulation with different flavors of El Niño. J. Climate, 22, 29782991, https://doi.org/10.1175/2008JCLI2691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, H. and D. J. Shea, 1985: The Southern Oscillation. Part IV: The precursors south of 15°S to the extremes of the oscillation. Mon. Wea. Rev., 113, 20632074, https://doi.org/10.1175/1520-0493(1985)113<2063:TSOPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, https://doi.org/10.1029/2001GL013435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and S. Battisti, 2003a: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16, 26532667, https://doi.org/10.1175/1520-0442(2003)016<2653:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and S. Battisti, 2003b: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., M. Alexander, and A. Fontaine, 2009: Midlatitude excitation of tropical variability in the Pacific: The role of thermodynamic coupling and seasonality. J. Climate, 22, 518534, https://doi.org/10.1175/2008JCLI2220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., M. Alexander, and M. Newman, 2014: Optimal growth of central and East Pacific ENSO events. Geophys. Res. Lett., 41, 40274034, https://doi.org/10.1002/2014GL059997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., and J. C. Furtado, 2017: The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophys. Res. Lett., 44, 74387446, https://doi.org/10.1002/2017GL073475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, https://doi.org/10.1175/2010JCLI3688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., A. Clement, and P. DiNezio, 2014a: The South Pacific meridional mode: A mechanism for ENSO-like variability. J. Climate, 27, 769783, https://doi.org/10.1175/JCLI-D-13-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., C. Deser, A. Clement, and R. Tomas, 2014b: Equatorial signatures of the Pacific meridional modes: Dependence on mean climate state. Geophys. Res. Lett., 41, 568574, https://doi.org/10.1002/2013GL058842.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 11 11 11

The South Pacific Meridional Mode and Its Role in Tropical Pacific Climate Variability

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
Restricted access

Abstract

The Pacific meridional mode, a thermodynamically coupled mode of variability, links extratropical Pacific oceanic and atmospheric anomalies to the tropical Pacific and may give rise to El Niño–Southern Oscillation (ENSO) events. While mechanistic studies on the impacts of the North Pacific meridional mode (NPMM) are prevalent in the literature, the South Pacific meridional mode (SPMM) has only recently been examined. Reanalysis and models from the archive of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used in this study to investigate further the SPMM and its role in ENSO predictability. Akin to the NPMM, the SPMM features anomalous subtropical South Pacific sea surface temperature (SST) warming in response to a weakened South Pacific subtropical high and relaxed trade winds. However, as opposed to the NPMM, the seasonality of the SPMM SST and wind components vary out of phase, in part because of the seasonal cycle of local mixed layer depth. Thus, the SPMM and the associated wind–evaporation–SST feedback are most energetic during austral summer, facilitating interaction with the concurrent NPMM conditions to regulate the occurrence, evolution, amplitude, and diversity of ENSO events. Parallel analyses with the CMIP5 models indicate that the models reasonably capture the temporal statistics and physical processes of the observed SPMM. Nonetheless, ENSO predictability within the models relies more on the slowly evolving equatorial ocean heat content than on the meridional modes. These findings reveal how the SPMM energizes components of ENSO variability, providing an additional benchmark for model evaluation of Pacific climate variability across multiple time scales.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0860.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yujia You, yujia@ldeo.columbia.edu

Abstract

The Pacific meridional mode, a thermodynamically coupled mode of variability, links extratropical Pacific oceanic and atmospheric anomalies to the tropical Pacific and may give rise to El Niño–Southern Oscillation (ENSO) events. While mechanistic studies on the impacts of the North Pacific meridional mode (NPMM) are prevalent in the literature, the South Pacific meridional mode (SPMM) has only recently been examined. Reanalysis and models from the archive of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used in this study to investigate further the SPMM and its role in ENSO predictability. Akin to the NPMM, the SPMM features anomalous subtropical South Pacific sea surface temperature (SST) warming in response to a weakened South Pacific subtropical high and relaxed trade winds. However, as opposed to the NPMM, the seasonality of the SPMM SST and wind components vary out of phase, in part because of the seasonal cycle of local mixed layer depth. Thus, the SPMM and the associated wind–evaporation–SST feedback are most energetic during austral summer, facilitating interaction with the concurrent NPMM conditions to regulate the occurrence, evolution, amplitude, and diversity of ENSO events. Parallel analyses with the CMIP5 models indicate that the models reasonably capture the temporal statistics and physical processes of the observed SPMM. Nonetheless, ENSO predictability within the models relies more on the slowly evolving equatorial ocean heat content than on the meridional modes. These findings reveal how the SPMM energizes components of ENSO variability, providing an additional benchmark for model evaluation of Pacific climate variability across multiple time scales.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0860.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yujia You, yujia@ldeo.columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.42 MB)
Save