• Alexeev, V. A., E. S. Euskirchen, J. E. Cherry, and R. C. Busey, 2015: Tundra burning in 2007—Did sea ice retreat matter? Polar Sci., 9, 185195, https://doi.org/10.1016/j.polar.2015.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balzter, H., and Coauthors, 2005: Impact of the Arctic Oscillation pattern on interannual forest fire variability in central Siberia. Geophys. Res. Lett., 32, L14709, https://doi.org/10.1029/2005GL022526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, L., V. A. Alexeev, C. D. Arp, B. M. Jones, and V. E. Romanovsky, 2018: Modelling the impacts of projected sea ice decline on the low atmosphere and near-surface permafrost on the North Slope of Alaska. Int. J. Climatol., https://doi.org/10.1002/joc.5741, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, D.-H., J.-S. Kug, W.-T. Kwon, F.-F. Jin, H.-J. Baek, and S.-K. Min, 2010: Arctic Oscillation responses to greenhouse warming and role of synoptic eddy feedback. J. Geophys. Res., 115, D17103, https://doi.org/10.1029/2010JD014160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter12_FINAL.pdf.

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation.” Geophys. Res. Lett., 27, 779782, https://doi.org/10.1029/1999GL010945.

  • Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239, 179202, https://doi.org/10.1016/S0022-1694(00)00343-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudkovich, Z., 1961: Relation of the ice drift in the Arctic Basin to ice conditions in the Soviet Arctic seas. Tr. Okeanogr. Kom. Akad. Nauk SSSR, 11, 1421.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., K. Arpe, M. Tiedtke, M. Capaldo, and H. Savijärvi, 1980: The performance of a medium-range forecast model in winter–Impact of physical parameterizations. Mon. Wea. Rev., 108, 17361773, https://doi.org/10.1175/1520-0493(1980)108<1736:TPOAMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2010: Influence of the Arctic Oscillation on central United States summer rainfall. J. Geophys. Res., 115, D01102, https://doi.org/10.1029/2009JD011805.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, https://doi.org/10.1029/2009JD011773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, https://doi.org/10.1029/2008GL033451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors, 2003: Improved skill for the anomaly correlation of geopotential heights at 500 hPa. Mon. Wea. Rev., 131, 10821102, https://doi.org/10.1175/1520-0493(2003)131<1082:ISFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and R. N. Maue, 2012: Recent Northern Hemisphere mid-latitude medium-range deterministic forecast skill. Tellus, 64A, 17531, https://doi.org/10.3402/tellusa.v64i0.17531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M., A. Butler, B. Jha, A. Kumar, and W. Wang, 2010: Unusual extremes in the negative phase of the Arctic Oscillation during 2009. Geophys. Res. Lett., 37, L10704, https://doi.org/10.1029/2010GL043338.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., G. A. Schmidt, and D. T. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res., 111, D18101, https://doi.org/10.1029/2005JD006323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., and E. S. Epstein, 1989: Skill scores and correlation coefficients in model verification. Mon. Wea. Rev., 117, 572582, https://doi.org/10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogi, M., S. Rysgaard, and D. G. Barber, 2016: Importance of combined winter and summer Arctic Oscillation (AO) on September sea ice extent. Environ. Res. Lett., 11, 034019, https://doi.org/10.1088/1748-9326/11/3/034019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19, https://doi.org/10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. A. Francis, E. Hanna, and M. Wang, 2012: The recent shift in early summer Arctic atmospheric circulation. Geophys. Res. Lett., 39, L19804, https://doi.org/10.1029/2012GL053268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, A. S., C. Deser, and J. Fasullo, 2014: A new tool for evaluating modes of variability in climate models. Eos, Trans. Amer. Geophys. Union, 95, 453455, https://doi.org/10.1002/2014EO490002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porter, D. F., J. J. Cassano, and M. C. Serreze, 2012: Local and large-scale atmospheric responses to reduced Arctic sea ice and ocean warming in the WRF model. J. Geophys. Res., 117, D11115, https://doi.org/10.1029/2011JD016969.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663, https://doi.org/10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skeie, P., 2000: Meridional flow variability over the Nordic seas in the Arctic Oscillation framework. Geophys. Res. Lett., 27, 25692572, https://doi.org/10.1029/2000GL011529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., W. Ermold, and J. Zhang, 2008: Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett., 35, L02614, https://doi.org/10.1029/2007GL031651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., J. Zhang, and W. Ermold, 2010: Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt. J. Geophys. Res., 115, C11004, https://doi.org/10.1029/2009JC005849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoner, A. M. K., K. Hayhoe, and D. J. Wuebbles, 2009: Assessing general circulation model simulations of atmospheric teleconnection patterns. J. Climate, 22, 43484372, https://doi.org/10.1175/2009JCLI2577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, L.-B., 2001: Can we consider the Arctic Oscillation independently from the Barents oscillation? Geophys. Res. Lett., 28, 42274230, https://doi.org/10.1029/2001GL013740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Linden, E. C., R. Bintanja, and W. Hazeleger, 2017: Arctic decadal variability in a warming world. J. Geophys. Res. Atmos., 122, 56775696, https://doi.org/10.1002/2016JD026058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., P. Tisler, and P. Uotila, 2012: Atmospheric forcing on the drift of Arctic sea ice in 1989–2009. Geophys. Res. Lett., 39, L02501, https://doi.org/10.1029/2011GL050118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and M. Ikeda, 2000: Arctic oscillation and Arctic sea-ice oscillation. Geophys. Res. Lett., 27, 12871290, https://doi.org/10.1029/1999GL002389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Zhang, E. Watanabe, M. Ikeda, K. Mizobata, J. E. Walsh, X. Bai, and B. Wu, 2009: Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett., 36, L05706, https://doi.org/10.1029/2008GL036706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, E., J. Wang, A. Sumi, and H. Hasumi, 2006: Arctic dipole anomaly and its contribution to sea ice export from the Arctic Ocean in the 20th century. Geophys. Res. Lett., 33, L23703, https://doi.org/10.1029/2006GL028112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Wang, and J. E. Walsh, 2006: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Climate, 19, 210225, https://doi.org/10.1175/JCLI3619.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., R. Zhang, and D. Rosanne, 2008: Arctic dipole anomaly and summer rainfall in northeast China. Chin. Sci. Bull., 53, 2222, https://doi.org/10.1007/s11434-008-0229-1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. E. Overland, and R. D’Arrigo, 2012: Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend. Tellus, 64A, 18590, https://doi.org/10.3402/tellusa.v64i0.18590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, X.-G., T.-J. Zhou, and R.-C. Yu, 2008: The Arctic Oscillation in coupled climate models. Chin. J. Geophys., 51, 223239, https://doi.org/10.1002/cjg2.1214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and K. Kodera, 2005: Interdecadal Arctic Oscillation in twentieth century climate simulations viewed as internal variability and response to external forcing. Geophys. Res. Lett., 32, L03707, https://doi.org/10.1029/2004GL021870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, M. Steele, and A. Schweiger, 2008: What drove the dramatic retreat of Arctic sea ice during summer 2007? Geophys. Res. Lett., 35, L11505, https://doi.org/10.1029/2008GL034005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2015: Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl. Acad. Sci. USA, 112, 45704575, https://doi.org/10.1073/pnas.1422296112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J. C. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, https://doi.org/10.1029/2008GL035607.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 14 14 14

Patterns, Impacts, and Future Projections of Summer Variability in the Arctic from CMIP5 Models

View More View Less
  • 1 International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, and NORCE Norwegian Research Centre, and Bjerknes Centre for Climate Research, Bergen, Norway
  • | 2 International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 3 Department of Atmospheric Sciences, University of Alaska Fairbanks, Fairbanks, Alaska
Restricted access

Abstract

Thirty models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) are evaluated for their performances in reproducing two summertime atmospheric circulation patterns in the Arctic: the Arctic Oscillation (AO) and Arctic dipole (AD). The reference AO and AD are extracted from the ERA-Interim dataset (1979–2016). Model evaluation is conducted during the historical period (1901–2005). Models are ranked by a combined metrics approach based on two pattern correlation coefficients (PCCs) and two explained variances for the AO and AD, respectively. In the projected period (2006–2100), most models produce a positive trend for the AO index and a negative trend for the AD index in summer. The models ranked higher based on the combined metrics ranking show greater consistency and smaller values in the magnitudes of trends of AO and AD than the lower-ranked ones. The projected trends in the AO and AD contribute to a slight increase, if not a decrease, of the air temperature and an acceleration of precipitation increase in the twenty-first century over Arctic Alaska, which is the reverse of over the Barents and Kara Seas. Changes in the AO and AD are relatively minor contributing factors to the projected temperature and precipitation changes in the Arctic, among which the changes in the AD play a bigger role than those in the AO. The summer AO and AD have a stronger impact on the spatial asymmetry of the precipitation field than on the air temperature field.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0119.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Cai, lcai4@alaska.edu

Abstract

Thirty models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) are evaluated for their performances in reproducing two summertime atmospheric circulation patterns in the Arctic: the Arctic Oscillation (AO) and Arctic dipole (AD). The reference AO and AD are extracted from the ERA-Interim dataset (1979–2016). Model evaluation is conducted during the historical period (1901–2005). Models are ranked by a combined metrics approach based on two pattern correlation coefficients (PCCs) and two explained variances for the AO and AD, respectively. In the projected period (2006–2100), most models produce a positive trend for the AO index and a negative trend for the AD index in summer. The models ranked higher based on the combined metrics ranking show greater consistency and smaller values in the magnitudes of trends of AO and AD than the lower-ranked ones. The projected trends in the AO and AD contribute to a slight increase, if not a decrease, of the air temperature and an acceleration of precipitation increase in the twenty-first century over Arctic Alaska, which is the reverse of over the Barents and Kara Seas. Changes in the AO and AD are relatively minor contributing factors to the projected temperature and precipitation changes in the Arctic, among which the changes in the AD play a bigger role than those in the AO. The summer AO and AD have a stronger impact on the spatial asymmetry of the precipitation field than on the air temperature field.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0119.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Cai, lcai4@alaska.edu

Supplementary Materials

    • Supplemental Materials (PDF 4.12 MB)
Save