• Alexander, M. A., J. D. Scott, and C. Deser, 2000: Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res., 105, 16 82316 842, https://doi.org/10.1029/2000JC900074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucharel, J., A. Timmermann, A. Santoso, M. H. England, F.-F. Jin, and M. A. Balmaseda, 2015: A surface layer variance heat budget for ENSO. Geophys. Res. Lett., 42, 35293537, https://doi.org/10.1002/2015GL063843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brainerd, K. E., and M. C. Gregg, 1995: Surface mixed and mixing layer depths. Deep-Sea Res. I, 42, 15211543, https://doi.org/10.1016/0967-0637(95)00068-H.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., M. A. Cane, A. T. Wittenberg, and D. Chen, 2017: ENSO in the CMIP5 simulations: Life cycles, diversity, and responses to climate change. J. Climate, 30, 775801, https://doi.org/10.1175/JCLI-D-15-0901.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-Y., G. A. Vecchi, and A. T. Wittenberg, 2015: Nonlinear zonal wind response to ENSO in the CMIP5 models: Roles of the zonal and meridional shift of the ITCZ/SPCZ and the simulated climatological precipitation. J. Climate, 28, 85568573, https://doi.org/10.1175/JCLI-D-15-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Cravatte, S., W. S. Kessler, N. Smith, and S. E. Wijffels, 2016: First report of TPOS 2010. Tech. Rep. GOOS-215, 200 pp., http://tpos2020.org/first-report/.

  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and C. Deser, 2014: Nonlinear controls on the persistence of La Niña. J. Climate, 27, 73357355, https://doi.org/10.1175/JCLI-D-14-00033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., B. P. Kirtman, A. C. Clement, S.-K. Lee, G. A. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Climate, 25, 73997420, https://doi.org/10.1175/JCLI-D-11-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695.

    • Search Google Scholar
    • Export Citation
  • Graham, F., A. T. Wittenberg, J. N. Brown, S. J. Marsland, and N. J. Holbrook, 2017: Understanding the double peaked El Niño in coupled GCMs. Climate Dyn., 48, 20452063, https://doi.org/10.1007/s00382-016-3189-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM): 2012 release. GFDL Ocean Group Tech. Rep. 7, 618 pp., http://mom-ocean.org/web/docs/project/MOM5_elements.pdf.

  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep 5, 295 pp.

  • Griffies, S. M., and Coauthors, 2016: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geosci. Model Dev., 9, 32313296, https://doi.org/10.5194/gmd-9-3231-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Y. Xue, D. Zhang, A. Kumar, and M. J. McPhaden, 2010: The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23, 49014925, https://doi.org/10.1175/2010JCLI3373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Y. Xue, H. Wang, W. Wang, and A. Kumar, 2012: Mixed layer heat budget of the El Niño in NCEP Climate Forecast System. Climate Dyn., 39, 365381, https://doi.org/10.1007/s00382-011-1111-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, 16 80316 821, https://doi.org/10.1029/2000JC900072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-B., I. Fukumori, and T. Lee, 2006: The closure of the ocean mixed layer temperature budget using level-coordinate model fields. J. Atmos. Oceanic Technol., 23, 840853, https://doi.org/10.1175/JTECH1883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-B., T. Lee, and I. Fukumori, 2007: Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Niño-3 region. J. Climate, 20, 38223843, https://doi.org/10.1175/JCLI4206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., I. Fukumori, and B. Tang, 2004: Temperature advection: Internal versus external processes. J. Phys. Oceanogr., 34, 19361944, https://doi.org/10.1175/1520-0485(2004)034<1936:TAIVEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological atlas of the world ocean. Prof. Pap. 13, U.S. Government Printing Office, 173 pp.

  • McPhaden, M. J., 2002: Mixed layer temperature balance on intraseasonal timescales in the equatorial Pacific Ocean. J. Climate, 15, 26322647, https://doi.org/10.1175/1520-0442(2002)015<2632:MLTBOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praveen Kumar, B., J. Vialard, M. Lengaigne, V. Murty, and M. McPhaden, 2012: TropFlux: Air–sea fluxes for the global tropical oceans—Description and evaluation. Climate Dyn., 38, 15211543, https://doi.org/10.1007/s00382-011-1115-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and K. A. Kelly, 1993: Upper-ocean heat balance in the Kuroshio Extension region. J. Phys. Oceanogr., 23, 20272041, https://doi.org/10.1175/1520-0485(1993)023<2027:UOHBIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., 2003: Mixed layer heat balance in the western North Pacific. J. Geophys. Res., 108, 3242, https://doi.org/10.1029/2002JC001536.

  • Ray, S., A. T. Wittenberg, S. M. Griffies, and F. Zeng, 2018: Understanding the equatorial Pacific cold tongue time-mean heat budget. Part II: Evaluation of the GFDL-FLOR coupled GCM. J. Climate, 31, 998710011, https://doi.org/10.1175/JCLI-D-18-0153.1.

    • Crossref
    • Export Citation
  • Rayner, N., D. E. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., J. Dukowicz, and R. Malone, 1992: Parallel ocean general circulation modeling. Physica D, 60, 3861, https://doi.org/10.1016/0167-2789(92)90225-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, M. S., and D. V. Hansen, 1999: Tropical Pacific Ocean mixed layer heat budget: The Pacific cold tongue. J. Phys. Oceanogr., 29, 6981, https://doi.org/10.1175/1520-0485(1999)029<0069:TPOMLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and A. T. Wittenberg, 2010: El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev.: Climate Change, 1, 260270, https://doi.org/10.1002/wcc.33.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., C. Menkes, J.-P. Boulanger, P. Delecluse, E. Guilyardi, M. J. McPhaden, and G. Madec, 2001: A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J. Phys. Oceanogr., 31, 16491675, https://doi.org/10.1175/1520-0485(2001)031<1649:AMSOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2002: ENSO response to altered climates. Ph.D. thesis, Princeton University, 475 pp.

  • Wittenberg, A. T., 2015: Low-frequency variations of ENSO. U.S. CLIVAR Variations, Vol. 13, US CLIVAR Project Office, Washington, D.C., 21–25.

  • Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, https://doi.org/10.1175/JCLI3631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., and Coauthors, 2018: Improved simulations of tropical Pacific annual-mean climate in the GFDL FLOR and HiFLOR coupled GCMs. J. Adv. Model. Earth Syst., in press.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., G. N. Kiladis, T. Shinoda, E. J. Metzger, H. E. Hurlburt, J. Lin, and B. S. Giese, 2010: Upper-ocean processes under the stratus cloud deck in the southeast Pacific Ocean. J. Phys. Oceanogr., 40, 103120, https://doi.org/10.1175/2009JPO4213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 17
PDF Downloads 19 19 19

Understanding the Equatorial Pacific Cold Tongue Time-Mean Heat Budget. Part I: Diagnostic Framework

View More View Less
  • 1 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
  • | 2 National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
Restricted access

Abstract

The Pacific equatorial cold tongue plays a leading role in Earth’s strongest and most predictable climate signals. To illuminate the processes governing cold tongue temperatures, the upper-ocean heat budget is explored using the GFDL-FLOR coupled GCM (the forecast-oriented low ocean resolution version of CM2.5). Starting from the exact temperature budget for layers of time-varying thickness, the layer temperature tendency terms are studied using hourly-, daily-, and monthly-mean output from a 30-yr simulation driven by present-day radiative forcings. The budget is then applied to 1) a surface mixed layer whose temperature is highly correlated with SST, in which the air–sea heat flux is balanced mainly by downward diffusion of heat across the layer base, and 2) a thicker advective layer that subsumes most of the vertical mixing, in which the air–sea heat flux is balanced mainly by monthly-scale advection. The surface warming from shortwave fluxes and submonthly meridional advection and the subsurface cooling from monthly vertical advection are both shown to be essential to maintain the cold tongue thermal stratification against the destratifying effects of vertical mixing. Although layer undulations strongly mediate the tendency terms on diurnal-to-interannual scales, the 30-yr-mean tendencies are found to be well summarized by analogous budgets developed for stationary but spatially varying layers. The results are used to derive practical simplifications of the exact budget, to support the analyses in Part II of this paper, and to facilitate broader application of heat budget analyses when evaluating and comparing climate simulations.

Current affiliation: Department of Marine Sciences, University of Connecticut, Groton, Connecticut.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-18-0153.1

Corresponding author: Sulagna Ray, sulagna.ray@gmail.com

Abstract

The Pacific equatorial cold tongue plays a leading role in Earth’s strongest and most predictable climate signals. To illuminate the processes governing cold tongue temperatures, the upper-ocean heat budget is explored using the GFDL-FLOR coupled GCM (the forecast-oriented low ocean resolution version of CM2.5). Starting from the exact temperature budget for layers of time-varying thickness, the layer temperature tendency terms are studied using hourly-, daily-, and monthly-mean output from a 30-yr simulation driven by present-day radiative forcings. The budget is then applied to 1) a surface mixed layer whose temperature is highly correlated with SST, in which the air–sea heat flux is balanced mainly by downward diffusion of heat across the layer base, and 2) a thicker advective layer that subsumes most of the vertical mixing, in which the air–sea heat flux is balanced mainly by monthly-scale advection. The surface warming from shortwave fluxes and submonthly meridional advection and the subsurface cooling from monthly vertical advection are both shown to be essential to maintain the cold tongue thermal stratification against the destratifying effects of vertical mixing. Although layer undulations strongly mediate the tendency terms on diurnal-to-interannual scales, the 30-yr-mean tendencies are found to be well summarized by analogous budgets developed for stationary but spatially varying layers. The results are used to derive practical simplifications of the exact budget, to support the analyses in Part II of this paper, and to facilitate broader application of heat budget analyses when evaluating and comparing climate simulations.

Current affiliation: Department of Marine Sciences, University of Connecticut, Groton, Connecticut.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-18-0153.1

Corresponding author: Sulagna Ray, sulagna.ray@gmail.com
Save