• Ackerman, T. P., K.-N. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623, https://doi.org/10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E., and G. G. Mace, 2014: Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J. Geophys. Res. Atmos., 119, 94929508, https://doi.org/10.1002/2014JD021458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, https://doi.org/10.2151/jmsj.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, E. R., and V. Ramanathan, 1997: Lagrangian approach for deriving cloud characteristics from satellite observations and its implications to cloud parameterization. J. Geophys. Res., 102, 21 38321 399, https://doi.org/10.1029/97JD00930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., B. Stevens, D. Coppin, T. Becker, K. A. Reed, A. Voigt, and B. Medeiros, 2016: Thermodynamic control of anvil cloud amount. Proc. Natl. Acad. Sci. USA, 113, 89278932, https://doi.org/10.1073/pnas.1601472113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., R. Roca, T. Fiolleau, and D. E. Poan, 2016: Macrophysical, microphysical, and radiative properties of tropical mesoscale convective systems over their life cycle. J. Climate, 29, 33533371, https://doi.org/10.1175/JCLI-D-15-0551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CERES Science Team, 2017a: CERES_SSF1deg_Ed4A data quality summary. NASA, accessed 16 May 2017, https://ceres.larc.nasa.gov/documents/DQ_summaries/CERES_SSF1deg_Ed4A_DQS.pdf.

  • CERES Science Team, 2017b: CERES_SYN1deg_Ed4A data quality summary (10/3/2017). NASA, https://ceres.larc.nasa.gov/documents/DQ_summaries/CERES_SYN1deg_Ed4A_DQS.pdf.

  • Cess, R. D., M. Zhang, B. A. Wielicki, D. F. Young, X.-L. Zhou, and Y. Nikitenko, 2001: The influence of the 1998 El Niño upon cloud-radiative forcing over the Pacific warm pool. J. Climate, 14, 21292137, https://doi.org/10.1175/1520-0442(2001)014<2129:TIOTEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, https://doi.org/10.1002/qj.49712353806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and R. S. Lindzen, 2002: Comments on “Tropical convection and the energy balance at the top of the atmosphere.” J. Climate, 15, 25662570, https://doi.org/10.1175/1520-0442(2002)015<2566:COTCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and D. Weitlich, 2007: Variability of tropical diurnal sea surface temperature. J. Climate, 20, 334352, https://doi.org/10.1175/JCLI3999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., F. P. J. Valero, P. J. Flatau, D. Lubin, H. Grassl, and P. Pilewskie, 1996: Radiative effects of convection in the tropical Pacific. J. Geophys. Res., 101, 14 99915 012, https://doi.org/10.1029/95JD02534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., M. Sun, L. T. Nguyen, M. L. Nordeen, C. O. Haney, D. F. Keyes, and P. F. Mlynczak, 2016: Advances in geostationary-derived longwave fluxes for the CERES synoptic (SYN1deg) product. J. Atmos. Oceanic Technol., 33, 503521, https://doi.org/10.1175/JTECH-D-15-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiolleau, T., and R. Roca, 2013: An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans. Geosci. Remote Sens., 51, 43024315, https://doi.org/10.1109/TGRS.2012.2227762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., S. K. Krueger, and K. N. Liou, 1995: Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52, 13101328, https://doi.org/10.1175/1520-0469(1995)052<1310:IORACI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, R., A. D. Del Genio, and W. B. Rossow, 1990: Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiances. J. Climate, 3, 11291152, https://doi.org/10.1175/1520-0442(1990)003<1129:BODCCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grosvenor, D. P., and R. Wood, 2014: The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds. Atmos. Chem. Phys., 14, 72917321, https://doi.org/10.5194/acp-14-7291-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrop, B. E., and D. L. Hartmann, 2016: The role of cloud radiative heating within the atmosphere on the high cloud amount and top-of-atmosphere cloud radiative effect. J. Adv. Model. Earth Syst., 8, 13911410, https://doi.org/10.1002/2016MS000670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29, 1951, https://doi.org/10.1029/2002GL015835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and S. E. Berry, 2017: The balanced radiative effect of tropical anvil clouds. J. Geophys. Res. Atmos., 122, 50035020, https://doi.org/10.1002/2017JD026460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14, 44954511, https://doi.org/10.1175/1520-0442(2001)014<4495:TCATEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2002: Reply to comments on “Tropical Convection and the Energy Balance at the Top of the Atmosphere.” J. Climate, 15, 25712572, https://doi.org/10.1175/1520-0442(2002)015<2571:R>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1994: Organization of convection within the Madden–Julian oscillation. J. Geophys. Res., 99, 80738083, https://doi.org/10.1029/94JD00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and G. M. McFarquhar, 1996: High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci., 53, 24242451, https://doi.org/10.1175/1520-0469(1996)053<2424:HAOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., L. M. Miloshevich, C. Schmitt, A. Bansemer, C. Twohy, M. R. Poellot, A. Fridlind, and H. Gerber, 2005: Homogeneous ice nucleation in subtropical and tropical convection and its influence on cirrus anvil microphysics. J. Atmos. Sci., 62, 4164, https://doi.org/10.1175/JAS-3360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2009: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 114, D00A19, https://doi.org/10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • Hong, G., P. Minnis, D. Doelling, J. K. Ayers, and S. Sun-Mack, 2012: Estimating effective particle size of tropical deep convective clouds: A look-up table method using satellite measurements of brightness temperature differences. J. Geophys. Res., 117, D06207, https://doi.org/10.1029/2011JD016652.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Igel, M. R., A. J. Drager, and S. C. van den Heever, 2014: A CloudSat cloud object partitioning technique and assessment and integration of deep convective anvil sensitivities to sea surface temperature. J. Geophys. Res. Atmos., 119, 10 51510 535, https://doi.org/10.1002/2014JD021717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Japan Aerospace Exploration Agency, 2013: Description of GCOM-W1 AMSR2: Level 1R and level 2 algorithms. Japan Aerospace Exploration Agency Tech. Memo. NDX-120015A, 119 pp., http://suzaku.eorc.jaxa.jp/GCOM_W/data/doc/NDX-120015A.pdf.

  • Japan Aerospace Exploration Agency, 2017a: AMSR2 products update. Japan Aerospace Exploration Agency Doc., 22 pp., http://suzaku.eorc.jaxa.jp/GCOM_W/materials/product/170222_Ver3.0_release_e.pdf.

  • Japan Aerospace Exploration Agency, 2017b: AMSR2-L2 standard product, version 3, subset 1 June 2016–31 August 2017. Japan Aerospace Exploration Agency, accessed 1 October 2017, http://suzaku.eorc.jaxa.jp/GCOM_W/data/data_w_product-1.html.

  • Jensen, M. P., and A. D. Del Genio, 2003: Radiative and microphysical characteristics of deep convective systems in the tropical western Pacific. J. Appl. Meteor., 42, 12341254, https://doi.org/10.1175/1520-0450(2003)042<1234:RAMCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7, 559565, https://doi.org/10.1175/1520-0442(1994)007<0559:OTONCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20, 489503, https://doi.org/10.1175/JCLI4023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96, 33433357, https://doi.org/10.1029/90JC01951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Z., and W. B. Rossow, 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17, 45414563, https://doi.org/10.1175/3222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., M. Deng, B. Soden, and E. Zipser, 2006: Association of tropical cirrus in the 10–15-km layer with deep convective sources: An observational study combining millimeter radar data and satellite-derived trajectories. J. Atmos. Sci., 63, 480503, https://doi.org/10.1175/JAS3627.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981415, https://doi.org/10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the central equatorial Pacific experiment. J. Atmos. Sci., 53, 24012423, https://doi.org/10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., D. P. Garber, D. F. Young, R. F. Arduini, and Y. Takano, 1998: Parameterization of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci., 55, 33133339, https://doi.org/10.1175/1520-0469(1998)055<3313:PORAEE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2008a: Near-real time cloud retrievals from operational and research meteorological satellites. Proc. SPIE, 7107, 710703, https://doi.org/10.1117/12.800344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., C. R. Yost, S. Sun-Mack, and Y. Chen, 2008b: Estimating the physical top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data. Geophys. Res. Lett., 35, L12801, https://doi.org/10.1029/2008GL033947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011a: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, https://doi.org/10.1109/TGRS.2011.2144601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011b: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens., 49, 44014430, https://doi.org/10.1109/TGRS.2011.2144602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., W. L. Smith Jr., K. M. Bedka, C. Yost, S. T. Bedka, R. Palikonda, D. A. Spangenberg, and S. Sun-Mack, 2015: Validation of satellite-retrieved cloud properties using SEAC4RS data. 2015 SEAC4 RS Science Team Meeting, Pasadena, CA, NASA, 22 pp., https://espo.nasa.gov/seac4rs/node/30834.

  • Minnis, P., K. Bedka, Q. Trepte, C. R. Yost, S. T. Bedka, B. A. Scarino, K. Khlopenkov, and M. M. Khaiyer, 2016: A consistent long-term cloud and clear-sky radiation property dataset from the Advanced Very High Resolution Radiometer (AVHRR). NASA Tech. Rep. CDRP-ATBD-0826, 159 pp., https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/AVHRR_Cloud_Properties_NASA/AlgorithmDescription_01B-30b.pdf.

  • Nakazawa, T., 1988: Tropical superclusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839, https://doi.org/10.2151/jmsj1965.66.6_823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2017: CER_GEO_Ed4_HIM08 pixel-level dataset, version 1.0, subset July and August 2015; June, July, and August 2016. NASA Earthdata, accessed 11 June 2017, https://search.earthdata.nasa.gov/search?q=CER_GEO_Ed4_HIM08.

  • Pope, M., C. Jakob, and M. J. Reeder, 2008: Convective systems of the north Australian monsoon. J. Climate, 21, 50915112, https://doi.org/10.1175/2008JCLI2304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protopapadaki, S. E., C. J. Stubenrauch, and A. G. Feofilov, 2017: Upper tropospheric cloud systems derived from IR sounders: Properties of cirrus anvils in the tropics. Atmos. Chem. Phys., 17, 38453859, https://doi.org/10.5194/acp-17-3845-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 353, 737740, https://doi.org/10.1038/351027a0.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment. Science, 243, 5763, https://doi.org/10.1126/science.243.4887.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., T. Fiolleau, and D. Bouniol, 2017: A simple model of the life cycle of mesoscale convective systems cloud shield in the tropics. J. Climate, 30, 42834298, http://doi.org/10.1175/JCLI-D-16-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21 (1), 1219, https://doi.org/10.5670/oceanog.2008.63.

  • Smith, W. L., Jr., 2014: 4-D cloud properties from passive satellite data and applications to resolve the flight icing threat to aircraft. Ph.D. dissertation, University of Wisconsin–Madison, 165 pp., http://satcorps.larc.nasa.gov/icing/pub/WLS-Dissertation.pdf.

  • Smith, W. L., Jr., P. Minnis, H. Finney, R. Palikonda, and M. M. Khaiyer, 2008: An evaluation of operational GOES-derived single-layer cloud top heights with ARSCL data over the ARM Southern Great Plains site. Geophys. Res. Lett., 35, L13820, https://doi.org/10.1029/2008GL034275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and N. V. Vershinsky, 1982: The vertical structure of the thin surface layer of the ocean under conditions of low wind speed. Deep-Sea Res., 29A, 14371449, https://doi.org/10.1016/0198-0149(82)90035-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and R. Lukas, 1996: Observation of spatial variability of diurnal thermocline and rain-formed halocline in the western Pacific warm pool. J. Phys. Oceanogr., 26, 25292538, https://doi.org/10.1175/1520-0485(1996)026<2529:OOSVOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and R. Lukas, 2006: The Near-Surface Layer of the Ocean, Springer, 572 pp.

  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part II: Westward-propagating inertio-gravity waves. J. Meteor. Soc. Japan, 72, 451465, https://doi.org/10.2151/jmsj1965.72.3_451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J., X. Dong, B. Xi, P. Minnis, W. L. Smith Jr., S. Sun-Mack, M. Thieman, and J. Wang, 2018: Comparisons of ice water path in deep convective systems among ground-based, GOES, and CERES-MODIS retrievals. J. Geophys. Res. Atmos., 123, 17081723, https://doi.org/10.1002/2017JD027498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Diedenhoven, B., A. M. Fridlind, B. Cairns, and A. S. Ackerman, 2014: Variation of ice crystal size, shape, and asymmetry parameter in tops of tropical deep convective clouds. J. Geophys. Res. Atmos., 119, 11 80911 825, https://doi.org/10.1002/2014JD022385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C. J., and D. L. Hartmann, 2018: Balanced cloud radiative effects across a range of dynamical conditions over the tropical West Pacific. Geophys. Res. Lett., https://doi.org/10.1029/2018GL080046, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze Jr., 2010: Global variability of mesoscale convective system anvil structure from A-Train satellite data. J. Climate, 23, 58645888, https://doi.org/10.1175/2010JCLI3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., R. A. Houze Jr., and A. J. Heymsfield, 2011: Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci., 68, 16531674, https://doi.org/10.1175/2011JAS3687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 124, 5399, https://doi.org/10.1002/qj.49712454504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799814, https://doi.org/10.1175/1520-0450(1969)008<0799:TROOUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 7 7 7

The Life Cycle of Anvil Clouds and the Top-of-Atmosphere Radiation Balance over the Tropical West Pacific

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 2 Science Systems and Applications, Inc., Hampton, Virginia
  • | 3 NASA Langley Research Center, Hampton, Virginia
  • | 4 Science Systems and Applications, Inc., Hampton, Virginia
Restricted access

Abstract

Observations from a geostationary satellite are used to study the life cycle of mesoscale convective systems (MCS), their associated anvil clouds, and their effects on the radiation balance over the warm pool of the tropical western Pacific Ocean. In their developing stages, MCS primarily consist of clouds that are optically thick and have a negative net cloud radiative effect (CRE). As MCS age, ice crystals in the anvil become larger, the cloud top lowers somewhat, and cloud radiative effects decrease in magnitude. Shading from anvils causes cool anomalies in the underlying sea surface temperature (SST) of up to −0.6°C. MCS often occur in clusters that are embedded within large westward-propagating disturbances, and therefore shading from anvils can cool SSTs over regions spanning hundreds of kilometers. Triggering of convection is more likely to follow a warm SST anomaly than a cold SST anomaly on a time scale of several days. This information is used to evaluate hypotheses for why, over the warm pool, the average shortwave and longwave CRE are individually large but nearly cancel. The results are consistent with the hypothesis that the cancellation in CRE is caused by feedbacks among cloud albedo, large-scale circulation, and SST.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Casey J. Wall, caseyw8@atmos.washington.edu

Abstract

Observations from a geostationary satellite are used to study the life cycle of mesoscale convective systems (MCS), their associated anvil clouds, and their effects on the radiation balance over the warm pool of the tropical western Pacific Ocean. In their developing stages, MCS primarily consist of clouds that are optically thick and have a negative net cloud radiative effect (CRE). As MCS age, ice crystals in the anvil become larger, the cloud top lowers somewhat, and cloud radiative effects decrease in magnitude. Shading from anvils causes cool anomalies in the underlying sea surface temperature (SST) of up to −0.6°C. MCS often occur in clusters that are embedded within large westward-propagating disturbances, and therefore shading from anvils can cool SSTs over regions spanning hundreds of kilometers. Triggering of convection is more likely to follow a warm SST anomaly than a cold SST anomaly on a time scale of several days. This information is used to evaluate hypotheses for why, over the warm pool, the average shortwave and longwave CRE are individually large but nearly cancel. The results are consistent with the hypothesis that the cancellation in CRE is caused by feedbacks among cloud albedo, large-scale circulation, and SST.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Casey J. Wall, caseyw8@atmos.washington.edu
Save