• Anderson, J. L., 1991: The robustness of barotropic unstable modes in a zonally varying atmosphere. J. Atmos. Sci., 48, 23932410, https://doi.org/10.1175/1520-0469(1991)048<2393:TROBUM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1976: The stability of planetary waves on a sphere. J. Fluid Mech., 73, 193213, https://doi.org/10.1017/S0022112076001341.

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borges, M. D., and D. L. Hartmann, 1992: Barotropic instability and optimal perturbations of observed nonzonal flows. J. Atmos. Sci., 49, 335354, https://doi.org/10.1175/1520-0469(1992)049<0335:BIAOPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borges, M. D., and P. D. Sardeshmukh, 1995: Barotropic Rossby wave dynamics of zonally varying upper-level flows during northern winter. J. Atmos. Sci., 52, 37793796, https://doi.org/10.1175/1520-0469(1995)052<3779:BRWDOZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, J. J.-C., and M. Mak, 1993: A dynamical empirical orthogonal function analysis of intraseasonal disturbances. J. Atmos. Sci., 50, 613630, https://doi.org/10.1175/1520-0469(1993)050<0613:ADEOFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, J. J.-C., and M. Mak, 1995: Nonmodal barotropic dynamics of the intraseasonal disturbances. J. Atmos. Sci., 52, 896914, https://doi.org/10.1175/1520-0469(1995)052<0896:NBDOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2002: A North Pacific short-wave train during the extreme phases of ENSO. J. Climate, 15, 23592376, https://doi.org/10.1175/1520-0442(2002)015<2359:ANPSWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2010: Characteristics of summer stationary waves in the Northern Hemisphere. J. Climate, 23, 44894507, https://doi.org/10.1175/2010JCLI3149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., and F. D’Andrea, 2016: Northern Hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements? J. Climate, 29, 88238840, https://doi.org/10.1175/JCLI-D-16-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, https://doi.org/10.1126/science.289.5487.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1988: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45, 163172, https://doi.org/10.1175/1520-0469(1988)045<0163:OEONRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1989a: Optimal excitation of baroclinic waves. J. Atmos. Sci., 46, 11931206, https://doi.org/10.1175/1520-0469(1989)046<1193:OEOBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1989b: Transient development in confluent and diffluent flows. J. Atmos. Sci., 46, 32793288, https://doi.org/10.1175/1520-0469(1989)046<3279:TDICAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2016: Matrix methods for analysis of structure in data sets. Matrix methods: EOF, SVD, ETC., University of Washington department of atmospheric sciences objective analysis course notes, 93–94, https://atmos.washington.edu/~dennis/552_Notes_4.pdf.

  • Hendon, H. H., D. W. J. Thompson, and M. C. Wheeler, 2007: Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Climate, 20, 24522467, https://doi.org/10.1175/JCLI4134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. 5th ed. Elsevier Academic Press, 552 pp.

  • Hoskins, B. J., 1973: Stability of the Rossby-Haurwitz wave. Quart. J. Roy. Meteor. Soc., 99, 723745, https://doi.org/10.1002/qj.49709942213.

  • Hu, Z.-Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 60476065, https://doi.org/10.1175/2009JCLI2798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., 1999: Scale-dependent properties of optimal perturbations on a zonally varying barotropic flow. J. Atmos. Sci., 56, 12381247, https://doi.org/10.1175/1520-0469(1999)056<1238:SDPOOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., W. Zhou, and T. Li, 2014: Influences of the Pacific–Japan teleconnection pattern on synoptic-scale variability in the western North Pacific. J. Climate, 27, 140154, https://doi.org/10.1175/JCLI-D-13-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, https://doi.org/10.1175/2007JCLI2048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, A. Z., M. Ting, and H. Wang, 1998: Maintenance of circulation anomalies during the 1988 drought and 1993 floods over the United States. J. Atmos. Sci., 55, 28102832, https://doi.org/10.1175/1520-0469(1998)055<2810:MOCADT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., and Y. Deng, 2015: Initial transient response of an intensifying baroclinic wave to increases in cloud droplet number concentration. J. Climate, 28, 96699677, https://doi.org/10.1175/JCLI-D-15-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, M., 1983: On moist quasi-geostrophic barotropic instability. J. Atmos. Sci., 40, 23492367, https://doi.org/10.1175/1520-0469(1983)040<2349:OMQGBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, M., 2002: Wave-packet resonance: Instability of a localized barotropic jet. J. Atmos. Sci., 59, 823836, https://doi.org/10.1175/1520-0469(2002)059<0823:WPRIOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, M., 2011: Purely barotropic and purely baroclinic instability. Atmospheric Dynamics, Cambridge University Press, 227–239.

  • Mak, M., and M. Cai, 1989: Local barotropic instability. J. Atmos. Sci., 46, 32893311, https://doi.org/10.1175/1520-0469(1989)046<3289:LBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and M. D. Dettinger, 1999: Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol., 19, 13991410, https://doi.org/10.1002/(SICI)1097-0088(19991115)19:13<1399::AID-JOC457>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitas, C. M., and W. A. Robinson, 2005: Atmospheric stability in a generalized barotropic model. J. Atmos. Sci., 62, 476491, https://doi.org/10.1175/JAS-3375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. Nogues-Paegle, and J. Paegle, 1995: Physical mechanisms of the 1993 summer floods. J. Atmos. Sci., 52, 879895, https://doi.org/10.1175/1520-0469(1995)052<0879:PMOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., and T. N. Palmer, 1993: Predictability and finite-time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119, 269298, https://doi.org/10.1002/qj.49711951004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., J. E. Walsh, and D. J. Charlevoix, 2005: Severe and Hazardous Weather: An Introduction to High-Impact Meteorology. 2nd ed. Kendall Hunt Publishing Company, 580 pp.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, D. R., 2006: Development of a time-domain, variable-period surface-wave magnitude measurement procedure for application at regional and teleseismic distances, part I: Theory. Bull. Seismol. Soc. Amer., 96, 665677, https://doi.org/10.1785/0120050055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, M. A. Cane, N. Harnik, M. Ting, and Y. Kushnir, 2010: Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific-North America sector. Quart. J. Roy. Meteor. Soc., 136, 277296, https://doi.org/10.1002/qj.588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., B. Wang, F. Huang, Q. Ding, and J.-Y. Lee, 2012: Interdecadal changes of the boreal summer circumglobal teleconnection (1958-2010). Geophys. Res. Lett., 39, L12704, https://doi.org/10.1029/2012GL052371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, T. Zhou, and X. Rong, 2013: Origin of the intraseasonal variability over the North Pacific in boreal summer. J. Climate, 26, 12111229, https://doi.org/10.1175/JCLI-D-11-00704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and B. J. Hoskins, 2017: The equivalent barotropic structure of waves in the tropical atmosphere in the Western Hemisphere. J. Atmos. Sci., 74, 16891704, https://doi.org/10.1175/JAS-D-16-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., K.-M. Lau, and K.-M. Kim, 2002: Variations of the east Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15, 306325, https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., Y. Deng, and R. X. Black, 2016: Warm season dry spells in the central and eastern United States: Diverging skill in climate model representation. J. Climate, 29, 56175624, https://doi.org/10.1175/JCLI-D-16-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., Y. Deng, and R. X. Black, 2017a: A dynamical and statistical characterization of United States extreme precipitation events and their associated large-scale meteorological patterns. J. Climate, 30, 13071326, https://doi.org/10.1175/JCLI-D-15-0910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., Y. Deng, and R. X. Black, 2017b: Observed and simulated spring and summer dryness in the United States: The impact of the Pacific sea surface temperature and beyond. J. Geophys. Res. Atmos., 122, 12 71312 731, https://doi.org/10.1002/2017JD027279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia–North America teleconnection. J. Climate, 29, 73137327, https://doi.org/10.1175/JCLI-D-16-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 10 10 10

An Intraseasonal Mode of Atmospheric Variability Relevant to the U.S. Hydroclimate in Boreal Summer: Dynamic Origin and East Asia Connection

View More View Less
  • 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
Restricted access

Abstract

Intraseasonal modes of atmospheric variability over the Northern Hemisphere (NH) midlatitudes in boreal summer are identified via an empirical orthogonal function (EOF) analysis of the daily 10–90-day bandpass-filtered 250-hPa streamfunction for the period of 1950–2016. The first two EOF modes are characterized, respectively, by (i) a single-signed streamfunction anomaly that extends across the NH and (ii) a regional dipole structure with centers over the Aleutian Islands and northeastern Pacific. The third EOF mode (EOF-3) is a quasi-stationary wave train over the Pacific–North American sector with an equivalent barotropic structure in the vertical. EOF-3 is associated with a northwest–southeast oriented anomalous precipitation dipole over the United States. A nonmodal instability analysis of the boreal summer climatological flow in terms of the 250-hPa streamfunction reveals that one of the top “optimal mode” disturbances mimicking the EOF-3 structure grows from an initial precursor disturbance over East Asia through extracting kinetic energy from background flow and attains its maximum amplitude in around nine days. An additional lag regression analysis illustrates that anomalous latent heating associated with cloud and precipitation formation over East Asia is responsible for generating the precursor disturbance for the EOF-3-like optimal mode. This result suggests the existence of an important connection between the hydrological cycles of East Asia and North America, which is dynamically intrinsic to the boreal summer upper-tropospheric flow. Knowledge of such a connection will help us better understand and model hydroclimate variability over these two continents.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Siyu Zhao, siyu_zhao@gatech.edu

Abstract

Intraseasonal modes of atmospheric variability over the Northern Hemisphere (NH) midlatitudes in boreal summer are identified via an empirical orthogonal function (EOF) analysis of the daily 10–90-day bandpass-filtered 250-hPa streamfunction for the period of 1950–2016. The first two EOF modes are characterized, respectively, by (i) a single-signed streamfunction anomaly that extends across the NH and (ii) a regional dipole structure with centers over the Aleutian Islands and northeastern Pacific. The third EOF mode (EOF-3) is a quasi-stationary wave train over the Pacific–North American sector with an equivalent barotropic structure in the vertical. EOF-3 is associated with a northwest–southeast oriented anomalous precipitation dipole over the United States. A nonmodal instability analysis of the boreal summer climatological flow in terms of the 250-hPa streamfunction reveals that one of the top “optimal mode” disturbances mimicking the EOF-3 structure grows from an initial precursor disturbance over East Asia through extracting kinetic energy from background flow and attains its maximum amplitude in around nine days. An additional lag regression analysis illustrates that anomalous latent heating associated with cloud and precipitation formation over East Asia is responsible for generating the precursor disturbance for the EOF-3-like optimal mode. This result suggests the existence of an important connection between the hydrological cycles of East Asia and North America, which is dynamically intrinsic to the boreal summer upper-tropospheric flow. Knowledge of such a connection will help us better understand and model hydroclimate variability over these two continents.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Siyu Zhao, siyu_zhao@gatech.edu
Save