• Bao, J.-W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, https://doi.org/10.1175/MWR3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, A., 2003: National Operational Hydrologic Remote Sensing Center Snow Data Assimilation System (SNODAS) products at NSIDC. NSIDC Special Rep. 11, 19 pp., https://nsidc.org/sites/nsidc.org/files/files/nsidc_special_report_11.pdf.

  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, https://doi.org/10.1175/BAMS-D-14-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., L. R. Leung, F. Song, and J. Lu, 2018: Roles of SST versus internal atmospheric variability in winter extreme precipitation variability along the U.S. West Coast. J. Climate, 31, 80398058, https://doi.org/10.1175/JCLI-D-18-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch, 2009: Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9, 24812497, https://doi.org/10.5194/acp-9-2481-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett., 42, 71797186, https://doi.org/10.1002/2015GL065435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, https://doi.org/10.1029/2010GL044696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2013: The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res., 49, 67316743, https://doi.org/10.1002/wrcr.20537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, F. M. Ralph, E. J. Fetzer, and P. J. Neiman, 2016: Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett., 43, 29642973, https://doi.org/10.1002/2016GL067978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 30223036, https://doi.org/10.1175/MWR-D-12-00338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., R. Leung, Q. Yang, C. Zhao, and J. Lu, 2015: Resolution and dynamical core dependence of atmospheric river frequency in global model simulations. J. Climate, 28, 27642776, https://doi.org/10.1175/JCLI-D-14-00567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., R. Leung, J.-H. Yoon, J. Lu, and Y. Gao, 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the Large Ensemble CESM simulations. Geophys. Res. Lett., 43, 13571363, https://doi.org/10.1002/2015GL067392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyer, S., and J. Hamman, 2017: Xarray: N-D labeled arrays and datasets in Python. J. Open Res. Software, 5, 10, http://doi.org/10.5334/jors.148.

  • Huning, L. S., S. A. Margulis, B. Guan, D. E. Waliser, and P. J. Neiman, 2017: Implications of detection methods on characterizing atmospheric river contribution to seasonal snowfall across Sierra Nevada, USA. Geophys. Res. Lett., 44, 10 44510 453, https://doi.org/10.1002/2017GL075201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., D. E. Waliser, P. J. Neiman, B. Guan, J.-M. Ryoo, and G. A. Wick, 2013: Effects of atmospheric river landfalls on the cold season precipitation in California. Climate Dyn., 40, 465474, https://doi.org/10.1007/s00382-012-1322-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, https://doi.org/10.1002/grl.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2003: The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J. Hydrometeor., 4, 10251043, https://doi.org/10.1175/1525-7541(2003)004<1025:TSOPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, https://doi.org/10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Operational Hydrologic Remote Sensing Center, 2004: Snow Data Assimilation System (SNODAS) data products at NSIDC, version 1. National Snow and Ice Data Center, accessed 16 May 2017, https://doi.org/10.7265/N5TB14TC.

    • Crossref
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., https://doi.org/10.5065/D6RR1W7M.

    • Crossref
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2011: Storms, floods, and the science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 92, 265266, https://doi.org/10.1029/2011EO320001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, https://doi.org/10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhoades, A. M., X. Huang, P. A. Ullrich, and C. M. Zarzycki, 2016: Characterizing Sierra Nevada snowpack using variable-resolution CESM. J. Appl. Meteor. Climatol., 55, 173196, https://doi.org/10.1175/JAMC-D-15-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaguchi, K., and Coauthors, 2015: Exploring a multiresolution approach using AMIP simulations. J. Climate, 28, 55495574, https://doi.org/10.1175/JCLI-D-14-00729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., and I. Appel, 2006: Development of the aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans. Geosci. Remote Sens., 44, 17471756, https://doi.org/10.1109/TGRS.2006.876029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty, 1999: Characteristics of the western United States snowpack from Snowpack Telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, https://doi.org/10.1029/1999WR900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugarbaker, L. J., and W. J. Carswell Jr., 2011: The National Map. U.S. Geological Survey, https://pubs.usgs.gov/fs/2011/3042.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toure, A. M., M. Rodell, Z.-L. Yang, H. Beaudoing, E. Kim, Y. Zhang, and Y. Kwon, 2016: Evaluation of the snow simulations from the Community Land Model, version 4 (CLM4). J. Hydrometeor., 17, 153170, https://doi.org/10.1175/JHM-D-14-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viale, M., and M. N. Nuñez, 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507, https://doi.org/10.1175/2010JHM1284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé Jr., 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 20212043, https://doi.org/10.1175/MWR-D-11-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé Jr., 2015: Changes in winter atmospheric rivers along the North American West Coast in CMIP5 climate models. J. Hydrometeor., 16, 118128, https://doi.org/10.1175/JHM-D-14-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2016: Exploring the impacts of physics and resolution on aqua-planet simulations from a nonhydrostatic global variable-resolution modeling framework. J. Adv. Model. Earth Syst., 8, 17511768, https://doi.org/10.1002/2016MS000727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 21
PDF Downloads 15 15 15

Influence of Atmospheric Rivers on Mountain Snowpack in the Western United States

View More View Less
  • 1 Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California
  • | 2 Pacific Northwest National Laboratory, Richland, Washington
  • | 3 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
Restricted access

Abstract

In the coastal mountains of western North America, most extreme precipitation is associated with atmospheric rivers (ARs), narrow bands of moisture originating in the tropics. Here we quantify how interannual variability in atmospheric rivers influences snowpack in the western United States in observations and a model. We simulate the historical climate with the Model for Prediction Across Scales (MPAS) with physics from the Community Atmosphere Model, version 5 [CAM5 (MPAS-CAM5)], using prescribed sea surface temperatures. In the global variable-resolution domain, regional refinement (at ~30 km) is applied to our region of interest and upwind over the northeast Pacific. To better characterize internal variability, we conduct simulations with three ensemble members over 30 years of the historical period. In the Cascade Range, with some exceptions, winters with more atmospheric river days are associated with less snowpack. In California’s Sierra Nevada, winters with more ARs are associated with greater snowpack. The slope of the linear regression of observed snow water equivalent (SWE) on reanalysis-based AR count has the same sign as that arrived at using the model, but is statistically significant in observations only for California. In spring, internal variance plays an important role in determining whether atmospheric river days appear to be associated with greater or less snowpack. The cumulative (winter through spring) number of atmospheric river days, on the other hand, has a relationship with spring snowpack, which is consistent across ensemble members. Thus, the impact of atmospheric rivers on winter snowpack has a greater influence on spring snowpack than spring atmospheric rivers in the model for both regions and in California consistently in observations.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0268.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: N. Goldenson, ngoldenson@ioes.ucla.edu

Abstract

In the coastal mountains of western North America, most extreme precipitation is associated with atmospheric rivers (ARs), narrow bands of moisture originating in the tropics. Here we quantify how interannual variability in atmospheric rivers influences snowpack in the western United States in observations and a model. We simulate the historical climate with the Model for Prediction Across Scales (MPAS) with physics from the Community Atmosphere Model, version 5 [CAM5 (MPAS-CAM5)], using prescribed sea surface temperatures. In the global variable-resolution domain, regional refinement (at ~30 km) is applied to our region of interest and upwind over the northeast Pacific. To better characterize internal variability, we conduct simulations with three ensemble members over 30 years of the historical period. In the Cascade Range, with some exceptions, winters with more atmospheric river days are associated with less snowpack. In California’s Sierra Nevada, winters with more ARs are associated with greater snowpack. The slope of the linear regression of observed snow water equivalent (SWE) on reanalysis-based AR count has the same sign as that arrived at using the model, but is statistically significant in observations only for California. In spring, internal variance plays an important role in determining whether atmospheric river days appear to be associated with greater or less snowpack. The cumulative (winter through spring) number of atmospheric river days, on the other hand, has a relationship with spring snowpack, which is consistent across ensemble members. Thus, the impact of atmospheric rivers on winter snowpack has a greater influence on spring snowpack than spring atmospheric rivers in the model for both regions and in California consistently in observations.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0268.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: N. Goldenson, ngoldenson@ioes.ucla.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.95 MB)
Save