• Bell, S. S., S. S. Chand, K. J. Tory, and C. Turville, 2018: Statistical assessment of the OWZ tropical cyclone tracking scheme in ERA-Interim. J. Climate, 31, 22172232, https://doi.org/10.1175/JCLI-D-17-0548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G., and M. J. Reeder, 2014: Objective identification of the intertropical convergence zone: Climatology and trends from the ERA-Interim. J. Climate, 27, 18941909, https://doi.org/10.1175/JCLI-D-13-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boudreault, M., L.-P. Caron, and S. J. Camargo, 2017: Reanalysis of climate influences on Atlantic tropical cyclone activity using cluster analysis. J. Geophys. Res., 122, 42584280, https://doi.org/10.1002/2016JD026103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and S. E. Zebiak, 2002: Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Wea. Forecasting, 17, 11521162, https://doi.org/10.1175/1520-0434(2002)017<1152:ITDATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007a: Cluster analysis of typhoon tracks: Part I: General properties. J. Climate, 20, 36353653, https://doi.org/10.1175/JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks: Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, https://doi.org/10.1175/JCLI4203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, A. G. Barnston, and M. Ghil, 2008: Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem. Geophys. Geosyst., 9, Q06V05, https://doi.org/10.1029/2007GC001861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., M. Boudreault, and S. J. Camargo, 2015: On the variability and predictability of eastern North Pacific tropical cyclone activity. J. Climate, 28, 96789696, https://doi.org/10.1175/JCLI-D-15-0377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2009: Tropical cyclone activity in the Fiji region: Spatial patterns and relationship to large-scale circulation. J. Climate, 22, 38773893, https://doi.org/10.1175/2009JCLI2880.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., K. J. Tory, H. Ye, and K. J. E. Walsh, 2017: Projected changes in El Niño driven tropical cyclone frequency in the Pacific. Nat. Climate Change, 7, 23127, https://doi.org/10.1038/nclimate3181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daloz, A. S., and S. J. Camargo, 2018: Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis? Climate Dyn., 50, 705715, https://doi.org/10.1007/s00382-017-3636-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daloz, A. S., and Coauthors, 2015: Cluster analysis of downscaled and explicitly simulated North Atlantic tropical cyclone tracks. J. Climate, 28, 13331361, https://doi.org/10.1175/JCLI-D-13-00646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias Pinto, J. R., M. S. Reboita, and R. P. da Rocha, 2013: Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. J. Geophys. Res. Atmos., 118, 10 87010 883, https://doi.org/10.1002/jgrd.50830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Don, P. K., J. L. Evans, F. Chiaromonte, and A. M. Kowaleski, 2016: Mixture-based path clustering for synthesis of ECMWF ensemble forecasts of tropical cyclone evolution. Mon. Wea. Rev., 144, 33013320, https://doi.org/10.1175/MWR-D-15-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutra, L. M. M., R. P. da Rocha, R. W. Lee, J. R. Peres, and R. de Camargo, 2017: Structure and evolution of subtropical cyclone Anita as evaluated by heat and vorticity budgets. Quart. J. Roy. Meteor. Soc., 143, 15391553, https://doi.org/10.1002/qj.3024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall, 456 pp.

  • Emanuel, K., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802, https://doi.org/10.1175/JCLI3908.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, https://doi.org/10.1073/pnas.1301293110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2017: Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci. USA, 114, 12 68112 684, https://doi.org/10.1073/pnas.1716222114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, https://doi.org/10.1175/BAMS-87-3-299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, https://doi.org/10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and A. Braun, 2012: A climatology of subtropical cyclones in the South Atlantic. J. Climate, 25, 73287340, https://doi.org/10.1175/JCLI-D-11-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffney, S. J., 2004: Probabilistic curve-aligned clustering and prediction with regression mixture models. Ph.D. dissertation, Dept. of Computer Sciences, University of California, Irvine, 281 pp.

  • Gaffney, S. J., A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil, 2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn., 29, 423440, https://doi.org/10.1007/s00382-007-0235-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gozzo, L. F., R. P. da Rocha, M. S. Reboita, and S. Sugahara, 2014: Subtropical cyclones over the southwestern South Atlantic: Climatological aspects and case study. J. Climate, 27, 85438562, https://doi.org/10.1175/JCLI-D-14-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gozzo, L. F., R. P. da Rocha, L. Gimeno, and A. Drumond, 2017: Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. J. Geophys. Res. Atmos., 122, 56365653, https://doi.org/10.1002/2016JD025764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harper, B. A., J. D. Kepert, and J. D. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. World Meteorological Organization Tech. Doc. WMO/TD-1555, 54 pp.

  • Held, I. M., and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 53535364, https://doi.org/10.1175/JCLI-D-11-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, https://doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horn, M., and Coauthors, 2014: Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations. J. Climate, 27, 91979213, https://doi.org/10.1175/JCLI-D-14-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., C. Zhou, and J. Liu, 2011: Observational evidence for poleward expansion of the Hadley circulation. Adv. Atmos. Sci., 28, 3344, https://doi.org/10.1007/s00376-010-0032-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, A. D. Del Genio, Y. Chen, S. J. Camargo, M.-S. Yao, M. Kelley, and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, https://doi.org/10.1175/JCLI-D-11-00447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2018: Process-oriented diagnosis of tropical cyclones in high-resolution GCMs. J. Climate, 31, 16851702, https://doi.org/10.1175/JCLI-D-17-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 15491565, https://doi.org/10.1175/BAMS-88-10-1549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815, https://doi.org/10.1029/2006GL028836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, https://doi.org/10.1175/2010JCLI3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976, https://doi.org/10.1175/JCLI-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349352, https://doi.org/10.1038/nature13278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone exposure. J. Climate, 29, 57255739, https://doi.org/10.1175/JCLI-D-16-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kowaleski, A. M., and J. L. Evans, 2016: Regression mixture model clustering of multimodel ensemble forecasts of Hurricane Sandy: Partition characteristics. Mon. Wea. Rev., 144, 38253846, https://doi.org/10.1175/MWR-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozar, M. E., M. E. Mann, S. J. Camargo, J. P. Kossin, and J. L. Evans, 2012: Stratified statistical models of North Atlantic basin-wide and regional tropical cyclone counts. J. Geophys. Res., 117, D18103, https://doi.org/10.1029/2011JD017170.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., Y. K. Lim, D. W. Shin, E. Chassignet, and S. Cocke, 2008: Atlantic basin seasonal hurricane simulations. J. Climate, 21, 31913206, https://doi.org/10.1175/2007JCLI2036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D. G., 1992: The beta and advection model for hurricane track forecasting. NOAA Tech. Memo. NWS NMC 70, 89 pp.

  • McTaggart-Cowan, R., L. F. Bosart, C. A. Davis, E. H. Atallah, J. R. Gyakum, and K. A. Emanuel, 2006: Analysis of Hurricane Catarina, 2004. Mon. Wea. Rev., 134, 30293053, https://doi.org/10.1175/MWR3330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, J., and Coauthors, 2017: Western North Pacific tropical cyclone model tracks in present and future climates. J. Geophys. Res. Atmos., 122, 97219744, https://doi.org/10.1002/2017JD027007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paliwal, M., and A. Patwardhan, 2013: Identification of clusters in tropical cyclone tracks of North Indian Ocean. Nat. Hazards, 68, 645656, https://doi.org/10.1007/s11069-013-0641-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pereira Filho, A. J., A. B. Pezza, I. Simmonds, R. S. Lima, and M. Vianna, 2010: New perspectives on the synoptic and mesoscale structure of Hurricane Catarina. Atmos. Res., 95, 157171, https://doi.org/10.1016/j.atmosres.2009.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., and I. Simmonds, 2005: The first South Atlantic hurricane: Unprecedented blocking, low shear, and climate change. Geophys. Res. Lett., 32, L15712, https://doi.org/10.1029/2005GL023390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., I. Simmonds, and A. J. Pereira Filho, 2009: Climate perspective on the large-scale circulation associated with the transition of the first South Atlantic hurricane. Int. J. Climatol., 29, 11161130, https://doi.org/10.1002/joc.1757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N.-C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, https://doi.org/10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., 2017: The global climatology of tropical cyclones. Oxford Research Encyclopedia of Natural Hazard Science, https://doi.org/10.1093/acrefore/9780199389407.013.79.

    • Crossref
    • Export Citation
  • Ramsay, H. A., S. J. Camargo, and D. Kim, 2012: Cluster analysis of tropical cyclone tracks in the southern hemisphere. Climate Dyn., 39, 897917, https://doi.org/10.1007/s00382-011-1225-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., III, K. R. Knapp, and J. P. Kossin, 2014: The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Wea. Rev., 142, 38813899, https://doi.org/10.1175/MWR-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. J. Camargo, T. M. Hall, C.-Y. Lee, M. K. Tippett, and A. A. Wing, 2016: Human influence on tropical cyclone intensity. Science, 353, 242246, https://doi.org/10.1126/science.aaf6574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., J. Lu, K. M. Grise, S. M. Davis, and T. Birner, 2018: Re-examining tropical expansion. Nat. Climate Change, 8, 768775, https://doi.org/10.1038/s41558-018-0246-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tory, K. J., S. S. Chand, J. L. McBride, H. Ye, and R. A. Dare, 2013: Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the Coupled Model Intercomparison Project. J. Climate, 26, 99469959, https://doi.org/10.1175/JCLI-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UNESCO, 2015: UNESCO supports recovery of Vanuatu’s culture sector following Tropical Cyclone Pam. Accessed 8 June 2018, https://en.unesco.org/news/unesco-supports-recovery-vanuatu-s-culture-sector-following-tropical-cyclone-pam.

  • Veiga, J. A. P., A. B. Pezza, I. Simmonds, and P. L. Silva Dias, 2008: An analysis of the environmental energetics associated with the transition of the first South Atlantic hurricane. Geophys. Res. Lett., 35, L15806, https://doi.org/10.1029/2008GL034511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vianna, M. L., V. V. Menezes, A. B. Pezza, and I. Simmonds, 2010: Interactions between Hurricane Catarina (2004) and warm core rings in the South Atlantic Ocean. J. Geophys. Res., 115, C07002, https://doi.org/10.1029/2009JC005974.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174, https://doi.org/10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K., 1997: Objective detection of tropical cyclones in high-resolution analyses. Mon. Wea. Rev., 125, 17671779, https://doi.org/10.1175/1520-0493(1997)125<1767:ODOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K., and Coauthors, 2015: Hurricanes and climate: The U.S. CLIVAR working group on hurricanes. Bull. Amer. Meteor. Soc., 96, 9971017, https://doi.org/10.1175/BAMS-D-13-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K., and Coauthors, 2016: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 6589, https://doi.org/10.1002/wcc.371.

    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., Prabhat, K. A. Reed, D. Stone, W. D. Collins, and J. T. Bacmeister, 2015: Resolution dependence of future tropical cyclone projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group idealized configurations. J. Climate, 28, 39053925, https://doi.org/10.1175/JCLI-D-14-00311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Leung, and Y. Wang, 2013: Cluster analysis of post-landfall tracks of landfalling tropical cyclones over China. Climate Dyn., 40, 12371255, https://doi.org/10.1007/s00382-012-1519-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Villarini, G. A. Vecchi, H. Murakami, and R. Gudgel, 2016: Statistical-dynamical seasonal forecast of western North Pacific and East Asia landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model. J. Adv. Model. Earth Syst., 8, 538565, https://doi.org/10.1002/2015MS000607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 13
PDF Downloads 15 15 15

A Statistical Assessment of Southern Hemisphere Tropical Cyclone Tracks in Climate Models

View More View Less
  • 1 CSIRO, Oceans and Atmosphere, Aspendale, Victoria, Australia
  • | 2 School of Science, Engineering and Information Technology, Federation University Australia, Mt Helen, Ballarat, Victoria, Australia
  • | 3 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
Restricted access

Abstract

Reliable projections of future changes in tropical cyclone (TC) characteristics are highly dependent on the ability of global climate models (GCMs) to simulate the observed characteristics of TCs (i.e., their frequency, genesis locations, movement, and intensity). Here, we investigate the performance of a suite of GCMs from the U.S. CLIVAR Working Group on Hurricanes in simulating observed climatological features of TCs in the Southern Hemisphere. A subset of these GCMs is also explored under three idealized warming scenarios. Two types of simulated TC tracks are evaluated on the basis of a commonly applied cluster analysis: 1) explicitly simulated tracks, and 2) downscaled tracks, derived from a statistical–dynamical technique that depends on the models’ large-scale environmental fields. Climatological TC properties such as genesis locations, annual frequency, lifetime maximum intensity (LMI), and seasonality are evaluated for both track types. Future changes to annual frequency, LMI, and the latitude of LMI are evaluated using the downscaled tracks where large sample sizes allow for statistically robust results. An ensemble approach is used to assess future changes of explicit tracks owing to their small number of realizations. We show that the downscaled tracks generally outperform the explicit tracks in relation to many of the climatological features of Southern Hemisphere TCs, despite a few notable biases. Future changes to the frequency and intensity of TCs in the downscaled simulations are found to be highly dependent on the warming scenario and model, with the most robust result being an increase in the LMI under a uniform 2°C surface warming.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the US CLIVAR Hurricanes and Climate special collection.

Corresponding author: Hamish A. Ramsay, hamish.ramsay@csiro.au

Abstract

Reliable projections of future changes in tropical cyclone (TC) characteristics are highly dependent on the ability of global climate models (GCMs) to simulate the observed characteristics of TCs (i.e., their frequency, genesis locations, movement, and intensity). Here, we investigate the performance of a suite of GCMs from the U.S. CLIVAR Working Group on Hurricanes in simulating observed climatological features of TCs in the Southern Hemisphere. A subset of these GCMs is also explored under three idealized warming scenarios. Two types of simulated TC tracks are evaluated on the basis of a commonly applied cluster analysis: 1) explicitly simulated tracks, and 2) downscaled tracks, derived from a statistical–dynamical technique that depends on the models’ large-scale environmental fields. Climatological TC properties such as genesis locations, annual frequency, lifetime maximum intensity (LMI), and seasonality are evaluated for both track types. Future changes to annual frequency, LMI, and the latitude of LMI are evaluated using the downscaled tracks where large sample sizes allow for statistically robust results. An ensemble approach is used to assess future changes of explicit tracks owing to their small number of realizations. We show that the downscaled tracks generally outperform the explicit tracks in relation to many of the climatological features of Southern Hemisphere TCs, despite a few notable biases. Future changes to the frequency and intensity of TCs in the downscaled simulations are found to be highly dependent on the warming scenario and model, with the most robust result being an increase in the LMI under a uniform 2°C surface warming.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the US CLIVAR Hurricanes and Climate special collection.

Corresponding author: Hamish A. Ramsay, hamish.ramsay@csiro.au
Save