• Bjerknes, J., 1969: Atmospheric teleconnections from equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893, https://doi.org/10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., and P. A. Stott, 2015: Extreme rainfall in the United Kingdom during winter 2013/14: The role of atmospheric circulation and climate change [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 96 (12), S46S50, https://doi.org/10.1175/BAMS-D-15-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P., B. Kirtman, A. Clement, S.-K. Lee, G. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Climate, 25, 73997420, https://doi.org/10.1175/JCLI-D-11-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R., and et al. , 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Implications for long-range predictability. J. Climate, 11, 31923203, https://doi.org/10.1175/1520-0442(1998)011<3192:EIOIER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. P. Barnett, 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. J. Climate, 11, 15751586, https://doi.org/10.1175/1520-0442(1998)011<1575:EIOIER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A., and R. Tedeschi, 2009: ENSO and extreme rainfall events in South America. J. Climate, 22, 15891609, https://doi.org/10.1175/2008JCLI2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannart, A., J. Pearl, F. Otto, P. Naveau, and M. Ghil, 2016: Causal counterfactual theory for the attribution of weather and climate related events. Bull. Amer. Meteor. Soc., 97, 99110, https://doi.org/10.1175/BAMS-D-14-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., and et al. , 2006: Trends in total and extreme South American rainfall 1960–2000 and links with sea surface temperature. J. Climate, 19, 14901512, https://doi.org/10.1175/JCLI3695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herring, S. C., M. P. Hoerling, J. P. Kossin, T. C. Peterson, and P. A. Stott, 2015: Explaining extreme events of 2014 from a climate perspective. Bull. Amer. Meteor. Soc., 96, S1S172, https://doi.org/10.1175/BAMS-ExplainingExtremeEvents2014.1.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and et al. , 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, https://doi.org/10.1175/JCLI-D-12-00270.1.

  • Hoerling, M. P., K. Wolter, J. Perlwitz, X. Quan, J. Eischeid, H. Wang, S. Schubert, H. Diaz, and R. Dole, 2014: Northeast Colorado extreme rains interpreted in a climate change context [in “Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S15S18, https://doi.org/10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, N. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and N. S. Keenlyside, 2009: El Niño/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci. USA, 106, 20 57820 583, https://doi.org/10.1073/pnas.0710860105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, M., 2005: The relationship between relative humidity and the dew point temperature in moist air: A simple conversion and applications. Bull. Amer. Meteor. Soc., 86, 225233, https://doi.org/10.1175/BAMS-86-2-225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massey, N., and et al. , 2015: weather@home—Development and validation of a very large ensemble modeling system for probabilistic event attribution. Quart. J. Roy. Meteor. Soc., 141, 15281545, https://doi.org/10.1002/qj.2455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and H. Teng, 2007: Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Climate Dyn., 29, 779790, https://doi.org/10.1007/s00382-007-0268-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2016: Attribution of Extreme Weather Events in the Context of Climate Change. National Academy Press, 186 pp.

  • NCDC, 2002: Time bias corrected divisional temperature-precipitation-drought index: Documentation for dataset TD-9640. National Climatic Data Center, 12 pp., http://www1.ncdc.noaa.gov/pub/data/documentlibrary/tddoc/td9640.pdf.

  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, https://doi.org/10.1007/s00382-006-0180-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pall, P., T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. Hilberts, D. Lohmann, and M. R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382385, https://doi.org/10.1038/nature09762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., M. Hoerling, J. Eischeid, T. Xu, and A. Kumar, 2009: A strong bout of natural cooling in 2008. Geophys. Res. Lett., 36, L23706, https://doi.org/10.1029/2009GL041188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, doi:10.1038/nclimate3287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2016: A common framework for approaches to extreme event attribution. Curr. Climate Change Rep., 2, 2838, https://doi.org/10.1007/s40641-016-0033-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillman, J., V. Kharin, F. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extreme indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, doi:10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694697, https://doi.org/10.1038/19505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nat. Climate Change, 5, 725730, https://doi.org/10.1038/nclimate2657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., P. Yiou, F. Otto, P. Stott, N. Christidis, G. J. van Oldenborgh, and N. Schaller, 2016: Attribution of human-induced dynamical and thermodynamical contributions to extreme weather events. Environ. Res. Lett., 11, 114009, https://doi.org/10.1088/1748-9326/11/11/114009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., W.-R. Huang, H.-H. Hsu, and R. R. Gillies, 2015: Role of the strengthened El Niño teleconnection in the May 2015 floods over the southern Great Plains. Geophys. Res. Lett., 42, 81408146, https://doi.org/10.1002/2015GL065211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1981: Mechanisms determining the atmospheric response to sea-surface temperature anomalies. J. Atmos. Sci., 38, 554571, https://doi.org/10.1175/1520-0469(1981)038<0554:MDTART>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willett, K., A. Simmons, and D. Berry, 2014: [Global climate] Surface humidity [in “State of the Climate in 2013”]. Bull. Amer. Meteor. Soc., 95 (7), S19S20, https://doi.org/10.1175/2014BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 4
PDF Downloads 48 48 2

Diagnosing Human-Induced Dynamic and Thermodynamic Drivers of Extreme Rainfall

View More View Less
  • 1 University of Colorado, Cooperative Institute for Research in Environmental Sciences, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 2 NOAA/Earth System Research Laboratory, Physical Sciences Division. Boulder, Colorado
  • | 3 University of Colorado, Cooperative Institute for Research in Environmental Sciences, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Factors responsible for extreme monthly rainfall over Texas and Oklahoma during May 2015 are assessed. The event had a return period of at least 400 years, in contrast to the prior record, which was roughly a 100-yr event. The event challenges attribution science to disentangle factors because it occurred during a strong El Niño, a natural pattern of variability that affects the region’s springtime rains, and during the warmest global mean temperatures since 1880. Effects of each factor are diagnosed, as is the interplay between El Niño dynamics and human-induced climate change.

Analysis of historical climate simulations reveals that El Niño was a necessary condition for monthly rains to occur having the severity of May 2015. The model results herein further reveal that a 2015 magnitude event, whether conditioned on El Niño or not, was made neither more intense nor more likely to be due to human-induced climate change over the past century.

The intensity of extreme May rainfall over Texas and Oklahoma , analogous to the 2015 event, increases by roughly 5% by the latter half of the twenty-first century. No material changes occur in either El Niño–related teleconnections or in overall atmospheric dynamics during extreme May rainfall over the twenty-first century. The increased severity of Texas/Oklahoma May rainfall events in the future is principally due to thermodynamic driving, although much less than implied by simple Clausius–Clapeyron scaling arguments given a projected 23% increase in atmospheric precipitable water vapor. Other thermodynamic factors are identified that act in opposition to the increase in atmospheric water vapor, thereby reducing the effectiveness of overall thermodynamic driving of extreme May rainfall changes over Texas and Oklahoma.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-16-0919.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Linyin Cheng, linyin.cheng@noaa.gov

Abstract

Factors responsible for extreme monthly rainfall over Texas and Oklahoma during May 2015 are assessed. The event had a return period of at least 400 years, in contrast to the prior record, which was roughly a 100-yr event. The event challenges attribution science to disentangle factors because it occurred during a strong El Niño, a natural pattern of variability that affects the region’s springtime rains, and during the warmest global mean temperatures since 1880. Effects of each factor are diagnosed, as is the interplay between El Niño dynamics and human-induced climate change.

Analysis of historical climate simulations reveals that El Niño was a necessary condition for monthly rains to occur having the severity of May 2015. The model results herein further reveal that a 2015 magnitude event, whether conditioned on El Niño or not, was made neither more intense nor more likely to be due to human-induced climate change over the past century.

The intensity of extreme May rainfall over Texas and Oklahoma , analogous to the 2015 event, increases by roughly 5% by the latter half of the twenty-first century. No material changes occur in either El Niño–related teleconnections or in overall atmospheric dynamics during extreme May rainfall over the twenty-first century. The increased severity of Texas/Oklahoma May rainfall events in the future is principally due to thermodynamic driving, although much less than implied by simple Clausius–Clapeyron scaling arguments given a projected 23% increase in atmospheric precipitable water vapor. Other thermodynamic factors are identified that act in opposition to the increase in atmospheric water vapor, thereby reducing the effectiveness of overall thermodynamic driving of extreme May rainfall changes over Texas and Oklahoma.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-16-0919.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Linyin Cheng, linyin.cheng@noaa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 62.11 KB)
Save