• Ansell, T. J., and et al. , 2006: Daily mean sea level pressure reconstructions for the European–North Atlantic region for the period 1850–2003. J. Climate, 19, 27172742, https://doi.org/10.1175/JCLI3775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badin, G., and D. I. V. Domeisen, 2014a: A search for chaotic behavior in Northern Hemisphere stratospheric variability. J. Atmos. Sci., 71, 14941507, https://doi.org/10.1175/JAS-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badin, G., and D. I. V. Domeisen, 2014b: A search for chaotic behavior in stratospheric variability: Comparison between the Northern and Southern Hemispheres. J. Atmos. Sci., 71, 46114620, https://doi.org/10.1175/JAS-D-14-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badin, G., and D. I. V. Domeisen, 2016: Nonlinear stratospheric variability: Multifractal detrended fluctuation analysis and singularity spectra. Proc. Roy. Soc. London, 472A, 20150864, https://doi.org/10.1098/rspa.2015.0864.

    • Search Google Scholar
    • Export Citation
  • Badin, G., F. Crisciani, and G. Furlan, 2003: On the dynamics of quasi-geostrophic intergyre gyres. Nuovo Cimento, 26, 621632, https://doi.org/10.1393/ncc/i2003-10004-x.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and D. W. Thompson, 2009: A simplified annular mode index based on zonal-mean data. Quart. J. Roy. Meteor. Soc., 135, 16611672, https://doi.org/10.1002/qj.479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, https://doi.org/10.1126/science.1087143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2010: Dynamical feedbacks and the persistence of the NAO. J. Atmos. Sci., 67, 851865, https://doi.org/10.1175/2009JAS3193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, R. X., 2002: Stratospheric forcing of surface climate in the Arctic Oscillation. J. Climate, 15, 268277, https://doi.org/10.1175/1520-0442(2002)015<0268:SFOSCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bladé, I., B. Liebmann, D. Fortuny, and G. J. van Oldenborgh, 2012: Observed and simulated impacts of the summer NAO in Europe: Implications for projected drying in the Mediterranean region. Climate Dyn., 39, 709727, https://doi.org/10.1007/s00382-011-1195-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, G. E. P., G. M. Jenkins, and G. C. Reinsel, 1994: Time Series Analysis: Forecasting and Control. 3rd ed. Prentice Hall, 598 pp.

  • Brönnimann, S., 2007: Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45, RG3003, https://doi.org/10.1029/2006RG000199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A., and L. Polvani, 2011: El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett., 38, L13807, https://doi.org/10.1029/2011GL048084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A., and et al. , 2016: The climate-system historical forecast project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 14131427, https://doi.org/10.1002/qj.2743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden-Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345348, https://doi.org/10.1029/1998GL900321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Cramer, D., 1998: Fundamental Statistics for Social Research. Routledge, 89 pp.

  • Cropper, T., E. Hanna, M. A. Valente, and T. Jónsson, 2015: A daily Azores–Iceland North Atlantic Oscillation index back to 1850. Geosci. Data J., 2, 1224, https://doi.org/10.1002/gdj3.23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, L. Zhang, R. Zhang, G. A. Vecchi, and X. Yang, 2017: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Climate, 30, 37893805, https://doi.org/10.1175/JCLI-D-16-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633, https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2000: Zonal-eddy dynamics of the North Atlantic Oscillation. J. Climate, 13, 38933914, https://doi.org/10.1175/1520-0442(2000)013<3893:ZEDOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., L. Sun, and G. Chen, 2013: The role of synoptic eddies in the tropospheric response to stratospheric variability. Geophys. Res. Lett., 40, 49334937, http://doi.org/10.1002/grl.50943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., A. H. Butler, K. Fröhlich, M. Bittner, W. Müller, and J. Baehr, 2015: Seasonal predictability over Europe arising from El Niño and stratospheric variability in the MPI-ESM seasonal prediction system. J. Climate, 28, 256271, https://doi.org/10.1175/JCLI-D-14-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunstone, N., D. Smith, A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci., 9, 809814, https://doi.org/10.1038/ngeo2824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41, 56205628, https://doi.org/10.1002/2014GL061146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14, 676691, https://doi.org/10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22, 10821103, https://doi.org/10.1175/2008JCLI2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and R. Blender, 2003: Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys. Rev. Lett., 90, 108501, https://doi.org/10.1103/PhysRevLett.90.108501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser, A. M., and H. L. Swinney, 1986: Independent coordinates for strange attractors from mutual information. Phys. Rev., 33A, 11341140, https://doi.org/10.1103/PhysRevA.33.1134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabrielski, A., G. Badin, and L. Kaleschke, 2015: Anomalous dispersion of sea ice in the Fram Strait region. J. Geophys. Res. Oceans, 120, 18091824, https://doi.org/10.1002/2014JC010359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., and et al. , 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92114, https://doi.org/10.1007/s00376-014-0009-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., J. J. Benedict, and E. D. Maloney, 2014: Impact of the MJO on the boreal winter extratropical circulation. Geophys. Res. Lett., 41, 60556062, https://doi.org/10.1002/2014GL061094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastineau, G., and C. Frankignoul, 2015: Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Climate, 28, 13961416, https://doi.org/10.1175/JCLI-D-14-00424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E., L. M. Polvani, and D. Ancukiewicz, 2008a: Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys. Res. Lett., 35, L22707, https://doi.org/10.1029/2008GL035712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E., S. Voronin, and L. M. Polvani, 2008b: Testing the annular mode autocorrelation time scale in simple atmospheric general circulation models. Mon. Wea. Rev., 136, 15231536, https://doi.org/10.1175/2007MWR2211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R., 2000: The North Atlantic Oscillation. Stoch. Env. Res. Risk Assess., 14A, 213242, https://doi.org/10.1007/s004770000047.

  • Gulev, S., and M. Latif, 2015: The origins of a climate oscillation. Nature, 521, 428429, https://doi.org/10.1038/521428a.

  • Hall, R. J., A. A. Scaife, E. Hanna, J. M. Jones, and R. Erdélyi, 2017: Simple statistical probabilistic forecasts of the winter NAO. Wea. Forecasting, 32, 15851601, https://doi.org/10.1175/WAF-D-16-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., E. A. Barnes, and T. Woollings, 2013: Behaviour of the winter North Atlantic eddy-driven jet stream in the CMIP3 integrations. Climate Dyn., 41, 9951007, https://doi.org/10.1007/s00382-012-1560-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and et al. , 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, https://doi.org/10.1038/ngeo1032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, and M. Visbeck, 2001: The North Atlantic Oscillation. Science, 291, 603605, https://doi.org/10.1126/science.1058761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iza, M., N. Calvo, and E. Manzini, 2016: The stratospheric pathway of La Niña. J. Climate, 29, 88998914, https://doi.org/10.1175/JCLI-D-16-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. Jónsson, and D. Wheeler, 1997: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17, 14331450, https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J. L., and J. A. Yorke, 1979: Chaotic behavior of multidimensional difference equations. Functional Differential Equations and Approximations of Fixed Points, H.-O. Peitgen and H.-O. Walther, Eds., Lecture Notes in Mathematics, Vol. 730, Springer, 204–227.

    • Crossref
    • Export Citation
  • Keeley, S. P. E., R. T. Sutton, and L. C. Shaffrey, 2009: Does the North Atlantic Oscillation show unusual persistence on intraseasonal timescales? Geophys. Res. Lett., 36, L22706, https://doi.org/10.1029/2009GL040367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., S. P. Sobolowski, and A. A. Scaife, 2015: Intraseasonal persistence of European surface temperatures. J. Climate, 28, 53655374, https://doi.org/10.1175/JCLI-D-15-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krahmann, G., and M. Visbeck, 2003: Variability of the northern annular mode’s signature in winter sea ice concentration. Polar Res., 22, 5157, https://doi.org/10.3402/polar.v22i1.6443.

    • Search Google Scholar
    • Export Citation
  • Kunz, T., and R. J. Greatbatch, 2013: On the northern annular mode surface signal associated with stratospheric variability. J. Atmos. Sci., 70, 21032118, https://doi.org/10.1175/JAS-D-12-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecking, J. V., N. S. Keenlyside, and R. J. Greatbatch, 2015: Multiple timescales of stochastically forced North Atlantic Ocean variability: A model study. Ocean Dyn., 65, 13671381, https://doi.org/10.1007/s10236-015-0868-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orth, R., and S. I. Seneviratne, 2014: Using soil moisture forecasts for sub-seasonal summer temperature predictions in Europe. Climate Dyn., 43, 34033418, https://doi.org/10.1007/s00382-014-2112-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panchev, S., 2016: The Eulerian–Lagrangian time-scale transformation in the planetary wave model. Random Functions and Turbulence, S. Panchev, Ed., International Series of Monographs in Natural Philosophy, Vol. 32, Elsevier, 415–417.

  • Pesin, I., 1976: Characteristic Lyapunov indices and ergodic properties of smooth dynamical systems with invariant measure. Dokl. Akademii Nauk SSSR, 226, 774777.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., C. Deser, and L. Sun, 2015: Effects of stratospheric variability on El Niño teleconnections. Environ. Res. Lett., 10, 124021, https://doi.org/10.1088/1748-9326/10/12/124021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and C. K. Folland, 2002: Atlantic air–sea interaction and seasonal predictability. Quart. J. Roy. Meteor. Soc., 128, 14131443, https://doi.org/10.1002/qj.200212858302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruelle, R., 1990: Deterministic chaos: The science and the fiction. Proc. Roy. Soc. London, 427A, 241248, https://doi.org/10.1098/rspa.1990.0010.

    • Search Google Scholar
    • Export Citation
  • Sano, M., and Y. Sawada, 1985: Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett., 55, 10821085, https://doi.org/10.1103/PhysRevLett.55.1082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32, L18715, https://doi.org/10.1029/2005GL023226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and et al. , 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, https://doi.org/10.1002/2014GL059637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and et al. , 2016: Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett., 17, 5156, https://doi.org/10.1002/asl.598.

  • Semenov, V. A. and M. Latif, 2015: Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environ. Res. Lett., 10, 054020, https://doi.org/10.1088/1748-9326/10/5/054020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 17111725, https://doi.org/10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., F. Molteni, and L. Ferranti, 2015: Atmospheric initial conditions and the predictability of the Arctic Oscillation. Geophys. Res. Lett., 42, 11731179, https://doi.org/10.1002/2014GL062681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 78247845, https://doi.org/10.1175/JCLI-D-15-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sura, P., and A. Hannachi, 2015: Perspectives of non-Gaussianity in atmospheric synoptic and low-frequency variability. J. Climate, 28, 50915114, https://doi.org/10.1175/JCLI-D-14-00572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takens, F., 1981: Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, D. Rand and L. Young, Eds., Springer, 366–381.

    • Crossref
    • Export Citation
  • Thiéblemont, R., K. Matthes, N.-E. Omrani, K. Kodera, and F. Hansen, 2015: Solar forcing synchronizes decadal North Atlantic climate variability. Nat. Commun., 6, 8268, https://doi.org/10.1038/ncomms9268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., and J. Wallace, 1998: Observed linkages between Eurasian surface air temperature, the North Atlantic Oscillation, Arctic sea level pressure and the stratospheric polar vortex. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., and J. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., J. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and et al. , 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Visbeck, M., 2002: The ocean’s role in Atlantic climate variability. Science, 297, 22232224, https://doi.org/10.1126/science.1074029.

  • Visbeck, M., J. W. Hurrell, L. Polvani, and H. Cullen, 2001: The North Atlantic Oscillation: Past, present, and future. Proc. Natl. Acad. Sci. USA, 98, 12 87612 877, https://doi.org/10.1073/pnas.231391598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weissman, M., 1988: 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys., 60, 537572, https://doi.org/10.1103/RevModPhys.60.537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitney, H., 1936: Differentiable manifolds. Ann. Math., 37, 645680, https://doi.org/10.2307/1968482.

  • Woollings, T., A. Hannachi, B. Hoskins, and A. Turner, 2010a: A regime view of the North Atlantic Oscillation and its response to anthropogenic forcing. J. Climate, 23, 12911307, https://doi.org/10.1175/2009JCLI3087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, B. Hoskins, and A. Turner, 2010b: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, https://doi.org/10.1002/qj.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., C. Franzke, D. L. R. Hodson, B. Dong, E. A. Barnes, C. C. Raible, and J. G. Pinto, 2015: Contrasting interannual and multidecadal NAO variability. Climate Dyn., 45, 539556, https://doi.org/10.1007/s00382-014-2237-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1999: The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull. Amer. Meteor. Soc., 80, 245255, https://doi.org/10.1175/1520-0477(1999)080<0245:TIOSCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, J., H.-L. Ren, J. Wu, Y. Nie, and Q. Li, 2016: Subseasonal variability and predictability of the Arctic Oscillation/North Atlantic Oscillation in BCC_AGCM2.2. Dyn. Atmos. Oceans, 75, 3345, https://doi.org/10.1016/j.dynatmoce.2016.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 273 273 41
PDF Downloads 245 245 35

How Predictable Are the Arctic and North Atlantic Oscillations? Exploring the Variability and Predictability of the Northern Hemisphere

View More View Less
  • 1 GEOMAR Helmholtz Centre for Ocean Research Kiel, and Christian-Albrechts University of Kiel, Kiel, Germany
  • | 2 Institute of Oceanography, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
  • | 3 GEOMAR Helmholtz Centre for Ocean Research Kiel, and Christian-Albrechts University of Kiel, Kiel, Germany
© Get Permissions
Restricted access

ABSTRACT

The North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO) describe the dominant part of the variability in the Northern Hemisphere extratropical troposphere. Because of the strong connection of these patterns with surface climate, recent years have shown an increased interest and an increasing skill in forecasting them. However, it is unclear what the intrinsic limits of short-term predictability for the NAO and AO patterns are. This study compares the variability and predictability of both patterns, using a range of data and index computation methods for the daily NAO and AO indices. Small deviations from Gaussianity are found along with characteristic decorrelation time scales of around one week. In the analysis of the Lyapunov spectrum it is found that predictability is not significantly different between the AO and NAO or between reanalysis products. Differences exist, however, between the indices based on EOF analysis, which exhibit predictability time scales around 12–16 days, and the station-based indices, exhibiting a longer predictability of 18–20 days. Both of these time scales indicate predictability beyond that currently obtained in ensemble prediction models for short-term predictability. Additional longer-term predictability for these patterns may be gained through local feedbacks and remote forcing mechanisms for particular atmospheric conditions.

Current affiliation: Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniela Domeisen, daniela.domeisen@env.ethz.ch

ABSTRACT

The North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO) describe the dominant part of the variability in the Northern Hemisphere extratropical troposphere. Because of the strong connection of these patterns with surface climate, recent years have shown an increased interest and an increasing skill in forecasting them. However, it is unclear what the intrinsic limits of short-term predictability for the NAO and AO patterns are. This study compares the variability and predictability of both patterns, using a range of data and index computation methods for the daily NAO and AO indices. Small deviations from Gaussianity are found along with characteristic decorrelation time scales of around one week. In the analysis of the Lyapunov spectrum it is found that predictability is not significantly different between the AO and NAO or between reanalysis products. Differences exist, however, between the indices based on EOF analysis, which exhibit predictability time scales around 12–16 days, and the station-based indices, exhibiting a longer predictability of 18–20 days. Both of these time scales indicate predictability beyond that currently obtained in ensemble prediction models for short-term predictability. Additional longer-term predictability for these patterns may be gained through local feedbacks and remote forcing mechanisms for particular atmospheric conditions.

Current affiliation: Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniela Domeisen, daniela.domeisen@env.ethz.ch
Save