• Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008GL033614.

  • Argus, D. F., W. R. Peltier, R. Drummond, and A. W. Moore, 2014: The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int., 198, 537563, https://doi.org/10.1093/gji/ggu140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballantyne, A. P., M. Lavine, T. J. Crowley, J. Liu, and P. B. Baker, 2005: Meta-analysis of tropical surface temperatures during the Last Glacial Maximum. Geophys. Res. Lett., 32, L05712, https://doi.org/10.1029/2004GL021217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, A. L., 1978: Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35, 23622367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and et al. , 2007: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277, https://doi.org/10.5194/cp-3-261-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bush, A. B. G., and S. G. H. Philander, 1998: The role of ocean–atmosphere interactions in tropical cooling during the last glacial maximum. Science, 279, 13411344, https://doi.org/10.1126/science.279.5355.1341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavaillaz, Y., F. Codron, and M. Kageyama, 2013: Southern westerlies in LGM and future (RCP4.5) climates. Climate Past, 9, 517524, https://doi.org/10.5194/cp-9-517-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., 2007: Mechanisms that control the latitude of jet streams and surface westerlies. Ph.D. thesis, Princeton University, 160 pp.

  • COHMAP Members, 1988: Climatic changes of the last 18,000 years: Observations and model simulations. Science, 241, 10431052, https://doi.org/10.1126/science.241.4869.1043.

    • Search Google Scholar
    • Export Citation
  • Costas, S., F. Naughton, R. Goble, and H. Renssen, 2016: Windiness spells in SW Europe since the Last Glacial Maximum. Earth Planet. Sci. Lett., 436, 8292, https://doi.org/10.1016/j.epsl.2015.12.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrera, I., and et al. , 1999: Tropical climates at the Last Glacial Maximum: A new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Climate Dyn., 15, 823856, https://doi.org/10.1007/s003820050317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. Lee, and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61, 145160, https://doi.org/10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and P. Lin, 2011: Poleward shift of subtropical jets inferred from satellite-observed lower-stratospheric temperatures. J. Climate, 24, 55975603, https://doi.org/10.1175/JCLI-D-11-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., 2003: Extratropical Southern Hemisphere cyclones: Harbingers of climate change? J. Climate, 16, 28022805, https://doi.org/10.1175/1520-0442(2003)016<2802:ESHCHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., B. J. Hoskins, P. J. Valdes, and C. A. Senior, 1994: Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quart. J. Roy. Meteor. Soc., 120, 12091230, https://doi.org/10.1002/qj.49712051905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, S. P., G. Yu, and P. E. Tarasov, 1996: Late Quaternary lake-level record from northern Eurasia. Quat. Res., 45, 138159, https://doi.org/10.1006/qres.1996.0016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. Academic Press, 552 pp.

    • Crossref
    • Export Citation
  • Hotta, D., and H. Nakamura, 2011: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Climate, 24, 33773401, https://doi.org/10.1175/2010JCLI3910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kehrwald, N. M., W. D. McCoy, J. Thibeault, S. J. Burns, and E. A. Oches, 2010: Paleoclimatic implications of the spatial patterns of modern and LGM European land-snail shell δ18O. Quat. Res., 74, 166176, https://doi.org/10.1016/j.yqres.2010.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., D. M. W. Frierson, J. A. Renwick, and G. K. Vallis, 2010: Observations, simulations, and dynamics of jet stream variability and annular modes. J. Climate, 23, 61866199, https://doi.org/10.1175/2010JCLI3235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, F., and M. B. McElroy, 1984: Changes in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res., 89, 46294637, https://doi.org/10.1029/JD089iD03p04629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laîné, A., and et al. , 2009: Northern Hemisphere storm tracks during the Last Glacial Maximum in the PMIP2 ocean–atmosphere coupled models: Energetic study, seasonal cycle, precipitation. Climate Dyn., 32, 593614, https://doi.org/10.1007/s00382-008-0391-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and H. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 14901503, https://doi.org/10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and C. Morrill, 2013: Lake levels in Asia at the Last Glacial Maximum as indicators of hydrologic sensitivity to greenhouse gas concentrations. Quat. Sci. Rev., 60, 112, https://doi.org/10.1016/j.quascirev.2012.10.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, https://doi.org/10.1029/2006JD008087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludwig, P., E. J. Schaffernicht, Y. Shao, and J. G. Pinto, 2016: Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation. J. Geophys. Res. Atmos., 121, 21302145, https://doi.org/10.1002/2015JD024444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyle, M., L. Heusser, C. Ravelo, M. Yamamoto, J. Barron, N. S. Diffenbaugh, T. Herbert, and D. Andreasen, 2012: Out of the tropics: The Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States. Science, 337, 16291633, https://doi.org/10.1126/science.1218390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, B. A., J. M. Prospero, D. Mackie, D. Gaiero, P. P. Hesse, and Y. Balkanski, 2010: Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the Last Glacial Maximum. Earth-Sci. Rev., 99, 6197, https://doi.org/10.1016/j.earscirev.2009.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. H., 1990: Glacial–interglacial CO2 change: The iron hypothesis. Paleoceanography, 5, 113, https://doi.org/10.1029/PA005i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. P. Clark, and M. C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14, 27632768, https://doi.org/10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ono, Y., and T. Irino, 2004: Southern migration of westerlies in the Northern Hemisphere PEP II transect during the Last Glacial Maximum. Quat. Int., 118–119, 1322, https://doi.org/10.1016/S1040-6182(03)00128-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oster, J. L., D. E. Ibarra, M. J. Winnick, and K. Maher, 2015: Steering of westerly storms over western North America at the Last Glacial Maximum. Nat. Geosci., 8, 201205, https://doi.org/10.1038/ngeo2365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., D. F. Argus, and R. Drummond, 2015: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth, 120, 450487, https://doi.org/10.1002/2014JB011176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinot, S., G. Ramstein, S. P. Harrison, I. C. Prentice, J. Guiot, M. Stute, and S. Joussaume, 1999: Tropical paleoclimates at the Last Glacial Maximum: Comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata. Climate Dyn., 15, 857874, https://doi.org/10.1007/s003820050318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, https://doi.org/10.1175/2010JCLI3772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pullen, A., P. Kapp, A. T. McCallister, H. Chang, G. E. Gehrels, C. N. Garzione, R. V. Heermance, and L. Ding, 2011: Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology, 39, 10311034, https://doi.org/10.1130/G32296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, B., and G. Yu, 1998: Implications of lake level variations at 6 ka and 18 ka in mainland Asia. Global Planet. Change, 18, 5972, https://doi.org/10.1016/S0921-8181(98)00036-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272, https://doi.org/10.1175/2011JAS3641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2006: On the self-maintenance of midlatitude jets. J. Atmos. Sci., 63, 21092122, https://doi.org/10.1175/JAS3732.1.

  • Rojas, M., 2013: Sensitivity of Southern Hemisphere circulation to LGM and 4×CO2 climates. Geophys. Res. Lett., 40, 965970, https://doi.org/10.1002/grl.50195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rojas, M., and et al. , 2009: The southern westerlies during the Last Glacial Maximum in PMIP2 simulations. Climate Dyn., 32, 525548, https://doi.org/10.1007/s00382-008-0421-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., and J. R. Toggweiler, 1984: A new model for the role of the oceans in determining atmospheric PCO2. Nature, 308, 621624, https://doi.org/10.1038/308621a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegenthaler, U., and T. Wenk, 1984: Rapid atmospheric CO2 variations and ocean circulation. Nature, 308, 624626, https://doi.org/10.1038/308624a0.

  • Sime, L. C., K. E. Kohfeld, C. Le Quéré, E. W. Wolff, A. M. de Boer, R. M. Graham, and L. Bopp, 2013: Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Model–data comparison. Quat. Sci. Rev., 64, 104120, https://doi.org/10.1016/j.quascirev.2012.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sime, L. C., D. Hodgson, T. J. Bracegirdle, C. Allen, B. Perren, S. Roberts, and A. M. de Boer, 2016: Sea ice led to poleward-shifted winds at the Last Glacial Maximum: The influence of state dependency on CMIP5 and PMIP3 models. Climate Past, 12, 22412253, https://doi.org/10.5194/cp-12-2241-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., M. Zhang, and T. Liu, 2001: Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J. Geophys. Res., 106, 10 32510 333, https://doi.org/10.1029/2000JD900665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, T. Y., and M. Chiba, 2006: A numerical study of the contributions of dust source regions to the global dust budget. Global Planet. Change, 52, 88104, https://doi.org/10.1016/j.gloplacha.2006.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. S., and K. H. Anderson, 2000: Biomes of western North America at 18,000, 6000 and 0 14C yr BP reconstructed from pollen and packrat midden data. J. Biogeogr., 27, 555584, https://doi.org/10.1046/j.1365-2699.2000.00427.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., J. L. Russell, and S. R. Carson, 2006: Midlatitude westerlies, atmospheric CO2, and climate change during the ice age. Paleoceanography, 21, PA2005, https://doi.org/10.1029/2005PA001154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 773 pp.

    • Crossref
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, https://doi.org/10.1175/JAS3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., and K. Bryan, 2006: Ice age winds: An aquaplanet model. J. Climate, 19, 17061715, https://doi.org/10.1175/JCLI3766.1.

  • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, https://doi.org/10.1175/2007JAS2347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, G., B. Xue, J. Liu, and X. Chen, 2003: LGM lake records from China and an analysis of climate dynamics using a modelling approach. Global Planet. Change, 38, 223256, https://doi.org/10.1016/S0921-8181(02)00257-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, P., X. Zhou, Z. Jian, M. Sparrow, and Y. Han, 2004: Modeling the tropical climate and the impact of the western Pacific sea surface temperature at the Last Glacial Maximum. J. Geophys. Res., 109, D08105, https://doi.org/10.1029/2003JD004095.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 301 32
PDF Downloads 271 271 17

Northern Westerlies during the Last Glacial Maximum: Results from CMIP5 Simulations

View More View Less
  • 1 Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • | 2 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Joint Laboratory for Climate and Environmental Change at Chengdu University of Information Technology, Chengdu, and Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • | 3 Institute of Atmospheric Physics, Chinese Academy of Sciences, and Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

Based upon simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the vertical and regional characteristics of the northern westerlies during the Last Glacial Maximum (LGM) are investigated in this study. At the Northern Hemispheric scale, all nine available models simulate a poleward shift of the 200-hPa jet, and eight models simulate an equatorward shift of the 850-hPa jet compared to the preindustrial period; these shifts are of approximately 2°–3° latitude for the arithmetic multimodel mean. The upper-tropospheric cooling in the tropics, possibly due to reduced latent heat release, is expected to account for the poleward shift of the 200-hPa jet through the thermal wind relationship. Changes in the midlatitude baroclinic instability in response to the amplified polar cooling are associated with the jet stream in the lower troposphere through anomalous eddy activity. In particular, the types of predominant baroclinic eddies are regionally dependent. The behavior of the 850-hPa jet over the North Pacific is steered by transient eddies and characterized by a southward displacement during the LGM. By contrast, the remarkable enhancement of the North Atlantic jet stream throughout the troposphere is associated with the notably increased stationary eddy momentum convergence, presumably due to the presence of the Laurentide ice sheet over North America. In comparison with the proxy records, although there is no observational evidence explicitly indicating changes of the upper-level northern westerlies, the simulated LGM 850-hPa westerly wind field is indirectly concordant with the reconstructed moisture conditions over the Mediterranean region and southwestern North America.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-17-0314.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dabang Jiang, jiangdb@mail.iap.ac.cn

Abstract

Based upon simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the vertical and regional characteristics of the northern westerlies during the Last Glacial Maximum (LGM) are investigated in this study. At the Northern Hemispheric scale, all nine available models simulate a poleward shift of the 200-hPa jet, and eight models simulate an equatorward shift of the 850-hPa jet compared to the preindustrial period; these shifts are of approximately 2°–3° latitude for the arithmetic multimodel mean. The upper-tropospheric cooling in the tropics, possibly due to reduced latent heat release, is expected to account for the poleward shift of the 200-hPa jet through the thermal wind relationship. Changes in the midlatitude baroclinic instability in response to the amplified polar cooling are associated with the jet stream in the lower troposphere through anomalous eddy activity. In particular, the types of predominant baroclinic eddies are regionally dependent. The behavior of the 850-hPa jet over the North Pacific is steered by transient eddies and characterized by a southward displacement during the LGM. By contrast, the remarkable enhancement of the North Atlantic jet stream throughout the troposphere is associated with the notably increased stationary eddy momentum convergence, presumably due to the presence of the Laurentide ice sheet over North America. In comparison with the proxy records, although there is no observational evidence explicitly indicating changes of the upper-level northern westerlies, the simulated LGM 850-hPa westerly wind field is indirectly concordant with the reconstructed moisture conditions over the Mediterranean region and southwestern North America.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-17-0314.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dabang Jiang, jiangdb@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (XLSX 121.99 KB)
Save