• Chen, L., and O. W. Frauenfeld, 2014: Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models. J. Climate, 27, 39203937, https://doi.org/10.1175/JCLI-D-13-00465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., Z. Jiang, and L. Li, 2011: Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J. Climate, 24, 47414756, https://doi.org/10.1175/2011JCLI4102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esfahanian, E., A. P. Nejadhashemi, M. Abouali, F. Daneshvar, A. R. Alireza, M. R. Herman, and Y. Tang, 2016: Defining drought in the context of stream health. Ecol. Eng., 94, 668681, https://doi.org/10.1016/j.ecoleng.2016.06.110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and et al. , 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, https://doi.org/10.1007/s00382-012-1481-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jiang, Z., W. Li, J. Xu, and L. Li, 2015: Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J. Climate, 28, 86038619, https://doi.org/10.1175/JCLI-D-15-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Q. Zhang, Y. D. Chen, and V. P. Singh, 2013: GCMs-based spatiotemporal evolution of climate extremes during the 21st century in China. J. Geophys. Res. Atmos., 118, 11 01711 035, https://doi.org/10.1002/jgrd.50851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Q. Zhang, V. P. Singh, and P. Shi, 2017: Contribution of multiple climatic variables and human activities to streamflow changes across China. J. Hydrol., 545, 145162, https://doi.org/10.1016/j.jhydrol.2016.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., A. Mehran, T. J. Phillips, and A. AghaKouchak, 2014: Seasonal and regional biases in CMIP5 precipitation simulations. Climate Res., 60, 3550, https://doi.org/10.3354/cr01221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci., 12, 551563, https://doi.org/10.5194/hess-12-551-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 42, 28232829, https://doi.org/10.1002/2015GL064018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2016: Precipitation deficit flash droughts over the United States. J. Hydrometeor., 17, 11691184, https://doi.org/10.1175/JHM-D-15-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasrollahi, N., A. AghaKouchak, L. Cheng, L. Damberg, T. J. Phillips, C. Miao, K. Hsu, and S. Sorooshian, 2015: How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour. Res., 51, 28472864, https://doi.org/10.1002/2014WR016318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svoboda, 2013: Examining rapid onset drought development using the thermal infrared-based evaporative stress index. J. Hydrometeor., 14, 10571074, https://doi.org/10.1175/JHM-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and et al. , 2016: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. For. Meteor., 218–219, 230242, https://doi.org/10.1016/j.agrformet.2015.12.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological droughts. U.S. Department of Commerce Weather Bureau Research Paper 45, 58 pp., https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.

  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, https://doi.org/10.1002/jgrd.50203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., J. M. Arblaster, and R. Knutti, 2011: Mapping model agreement on future climate projections. Geophys. Res. Lett., 38, L23701, https://doi.org/10.1029/2011GL049863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., A. Gobiet, and A. Leuprecht, 2011: Empirical‐statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 15301544, https://doi.org/10.1002/joc.2168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thrasher, B., E. P. Maurer, C. McKellar, and P. B. Duffy, 2012: Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci., 16, 33093314, https://doi.org/10.5194/hess-16-3309-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venkataraman, K., S. Tummuri, A. Medina, and J. Perry, 2016: 21st century drought outlook for major climate divisions of Texas based on CMIP5 multimodel ensemble: Implications for water resource management. J. Hydrol., 534, 300316, https://doi.org/10.1016/j.jhydrol.2016.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010a: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, https://doi.org/10.1175/2009JCLI2909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, J. I. López-Moreno, M. Angulo, and A. El Kenawy, 2010b: A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer drought severity index. J. Hydrometeor., 11, 10331043, https://doi.org/10.1175/2010JHM1224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., X. Yuan, Z. Xie, P. Wu, and Y. Li, 2016: Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep., 6, 30571, https://doi.org/10.1038/srep30571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, X., G. Fang, H. Qi, L. Zhou, and Y. Gao, 2016: Changes of temperature and precipitation extremes in China: Past and future. Theor. Appl. Climatol., 126, 369383, https://doi.org/10.1007/s00704-015-1584-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woznicki, S. A., A. P. Nejadhashemi, Y. Tang, and L. Wang, 2016: Large-scale climate change vulnerability assessment of stream health. Ecol. Indic., 69, 578594, https://doi.org/10.1016/j.ecolind.2016.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., Z. Ma, M. Pan, and C. Shi, 2015: Microwave remote sensing of short‐term droughts during crop growing seasons. Geophys. Res. Lett., 42, 43944401, https://doi.org/10.1002/2015GL064125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., M. Xiao, V. P. Singh, and Y. D. Chen, 2014: Max-stable based evaluation of impacts of climate indices on extreme precipitation processes across the Poyang Lake basin, China. Global Planet. Change, 122, 271281, https://doi.org/10.1016/j.gloplacha.2014.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., M. Xiao, V. P. Singh, L. Liu, and C.-Y. Xu, 2015a: Observational evidence of summer precipitation deficit‐temperature coupling in China. J. Geophys. Res. Atmos., 120, 10 04010 049, https://doi.org/10.1002/2015JD023830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., T. Qi, V. P. Singh, Y. D. Chen, and M. Xiao, 2015b: Regional frequency analysis of droughts in China: A multivariate perspective. Water Resour. Manage., 29, 17671787, https://doi.org/10.1007/s11269-014-0910-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., M. Xiao, V. P. Singh, and Y. Wang, 2016: Spatiotemporal variations of temperature and precipitation extremes in the Poyang Lake basin, China. Theor. Appl. Climatol., 124, 855864, https://doi.org/10.1007/s00704-015-1470-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Q. You, C. Chen, and J. Ge, 2016: Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River basin, China. Atmos. Res., 178–179, 521534, https://doi.org/10.1016/j.atmosres.2016.04.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Q. You, L. Ye, and C. Chen, 2017a: Spatio-temporal variability and possible mechanism of rainy season precipitation in Poyang Lake basin, China. Climate Res., 72, 129140, https://doi.org/10.3354/cr01455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Q. You, C. Chen, and X. Li, 2017b: Flash droughts in a typical humid and subtropical basin: A case study in the Gan River basin, China. J. Hydrol., 551, 162176, https://doi.org/10.1016/j.jhydrol.2017.05.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 172 25
PDF Downloads 152 152 15

Evaluation of Downscaled CMIP5 Coupled with VIC Model for Flash Drought Simulation in a Humid Subtropical Basin, China

View More View Less
  • 1 Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 4 State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
© Get Permissions
Restricted access

Abstract

Compared to traditional drought events, flash droughts evolve rapidly during short-term extreme atmospheric conditions, with a lasting period of one pentad to several weeks. There are two main categories of flash droughts: the heat wave flash drought (HWFD), which is mainly caused by persistent high temperatures (heat waves), and the precipitation deficit flash drought (PDFD), which is mainly triggered by precipitation deficits. The authors’ previous research focused on the characteristics and causes of flash drought based on meteorological observations and Variable Infiltration Capacity (VIC) model simulations in a humid subtropical basin (Gan River basin, China). In this study, the authors evaluated the downscaled phase 5 of the Coupled Model Intercomparison Project (CMIP5) models’ simulations, coupled with the VIC model (CMIP5–VIC) in reproducing flash droughts in a humid subtropical basin in China. Most downscaled CMIP5–VIC simulations can reproduce the spatial patterns of flash droughts with respect to the benchmarks. The coupled models fail to readily replicate interannual variation (interannual pentad change), but most models can reflect the interannual variability (temporal standard deviation) and long-term average pentads of flash droughts. It is difficult to simultaneously depict both the spatial and temporal features of flash droughts within only one coupled model. The climatological patterns of the best multimodel ensemble mean are close to those of the all-model ensemble mean, but the best multimodel ensemble mean has a minimal bias range and relatively low computational burden.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qinglong You, yqingl@126.com

Abstract

Compared to traditional drought events, flash droughts evolve rapidly during short-term extreme atmospheric conditions, with a lasting period of one pentad to several weeks. There are two main categories of flash droughts: the heat wave flash drought (HWFD), which is mainly caused by persistent high temperatures (heat waves), and the precipitation deficit flash drought (PDFD), which is mainly triggered by precipitation deficits. The authors’ previous research focused on the characteristics and causes of flash drought based on meteorological observations and Variable Infiltration Capacity (VIC) model simulations in a humid subtropical basin (Gan River basin, China). In this study, the authors evaluated the downscaled phase 5 of the Coupled Model Intercomparison Project (CMIP5) models’ simulations, coupled with the VIC model (CMIP5–VIC) in reproducing flash droughts in a humid subtropical basin in China. Most downscaled CMIP5–VIC simulations can reproduce the spatial patterns of flash droughts with respect to the benchmarks. The coupled models fail to readily replicate interannual variation (interannual pentad change), but most models can reflect the interannual variability (temporal standard deviation) and long-term average pentads of flash droughts. It is difficult to simultaneously depict both the spatial and temporal features of flash droughts within only one coupled model. The climatological patterns of the best multimodel ensemble mean are close to those of the all-model ensemble mean, but the best multimodel ensemble mean has a minimal bias range and relatively low computational burden.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qinglong You, yqingl@126.com
Save