• Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, https://doi.org/10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, X., and F. Zhang, 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206214, https://doi.org/10.1175/JCLI-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of the atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 78715 801, https://doi.org/10.1029/92JD01517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boehm, J., A. Niell, P. Tregoning, and H. Schuh, 2006: Global mapping function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33, L07304, https://doi.org/10.1029/2005GL025546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boehm, J., R. Heinkelmann, and H. Schuh, 2007: Short note: A global model of pressure and temperature for geodetic applications. J. Geod., 81, 679683, https://doi.org/10.1007/s00190-007-0135-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • China Meteorological Administration, 1979: Atlas of Climate of the P.R. of China. SinoMaps Press, 226 pp.

  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Dai, A., J. Wang, R. H. Ware, and T. Van Hove, 2002: Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Res., 107, 4090, https://doi.org/10.1029/2001JD000642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., J. Wang, P. W. Thorne, D. E. Parker, L. Haimberger, and X. L. Wang, 2011: A new approach to homogenize daily radiosonde humidity data. J. Climate, 24, 965991, https://doi.org/10.1175/2010JCLI3816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. M. Davis, 2010: Trends in tropospheric humidity from reanalysis systems. J. Geophys. Res., 115, D19127, https://doi.org/10.1029/2010JD014192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., and Y. Sun, 2001: A study on anomalous activities of East Asian summer monsoon during 1999. J. Meteor. Soc. Japan, 79, 11191137, https://doi.org/10.2151/jmsj.79.1119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., C. N. Williams Jr., X. Yin, and R. S. Vose, 2009: Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geophys. Res., 114, D05112, https://doi.org/10.1029/2008JD010989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebita, A., and et al. , 2011: The Japanese 55-Year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, https://doi.org/10.2151/sola.2011-038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, W. P., and D. J. Gaffen, 1991: On the utility of radiosonde humidity archives for climate studies. Bull. Amer. Meteor. Soc., 72, 15071520, https://doi.org/10.1175/1520-0477(1991)072<1507:OTUORH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J. Q., and Q. W. Yao, 2003: Nonlinear Time Series: Nonparametric and Parametric Methods. Springer Series in Statistics, Springer, 553 pp.

  • Gao, Y., J. Xu, and D. Chen, 2015: Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J. Climate, 28, 28232841, https://doi.org/10.1175/JCLI-D-14-00300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garand, L., C. Grassotti, J. Hallé, and G. L. Klein, 1992: On differences in radiosonde humidity-reporting practices and their implications for numerical weather prediction and remote sensing. Bull. Amer. Meteor. Soc., 73, 14171423, https://doi.org/10.1175/1520-0477(1992)073<1417:ODIRHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gendt, G., G. Dick, C. H. Reigber, M. Tomassini, Y. Liu, and M. Ramatschi, 2003: Demonstration of NRT GPS water vapor monitoring for numerical weather prediction in Germany. J. Meteor. Soc. Japan, 82, 360370.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, https://doi.org/10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., L. Zhou, and W. Chen, 2003: The progresses of recent studies on the variabilities of the East Asian monsoon and their causes. Adv. Atmos. Sci., 20, 5569, https://doi.org/10.1007/BF03342050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, S., Z. Li, and J. Cho, 2008: Integrated water vapor field and multiscale variations over China from GPS measurements. J. Appl. Meteor. Climatol., 47, 30083015, https://doi.org/10.1175/2008JAMC1920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Charles Griffin, 202 pp.

  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197208, https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and et al. , 2001: The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C., 1979: Meiyu and its forecast in mid-lower reaches of Yangtze River (in Chinese). Meteor. Mon., 53, 28.

  • Liu, J., Z. Sun, H. Liang, X. Xu, and P. Wu, 2005: Precipitable water vapor on the Tibetan Plateau estimated by GPS, water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on the radiation budget. J. Geophys. Res., 110, D17106, https://doi.org/10.1029/2004JD005715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llamedo, P., R. Hierro, A. de la Torre, and P. Alexander, 2017: ENSO-related moisture and temperature anomalies over South America derived from GPS radio occultation profiles. Int. J. Climatol., 37, 268275, https://doi.org/10.1002/joc.4702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, N., K. E. Trenberth, J. Qin, K. Yang, and L. Yao, 2015: Detecting long-term trends in precipitable water over the Tibetan Plateau by synthesis of station and MODIS observations. J. Climate, 28, 17071722, https://doi.org/10.1175/JCLI-D-14-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., and G. Gao, 1984: Atlas of Water Climatology of China. Meteorological Press, 188 pp.

  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • McCarthy, M. P., P. W. Thorne, and H. A. Titchner, 2009: An analysis of tropospheric humidity trends from radiosondes. J. Climate, 22, 58205838, https://doi.org/10.1175/2009JCLI2879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1999: Moisture balance over China and the South China Sea during the summer monsoon in 1991 in relation to the intense rainfalls over China. J. Meteor. Soc. Japan, 77, 737751, https://doi.org/10.2151/jmsj1965.77.3_737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onogi, K., and et al. , 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, https://doi.org/10.2151/jmsj.85.369.

  • Paltridge, G., A. Arking, and M. Pook, 2009: Trends in middle- and upper-level tropospheric humidity from NCEP reanalysis data. Theor. Appl. Climatol., 98, 351359, https://doi.org/10.1007/s00704-009-0117-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., D. A. Salstein, and R. D. Rosen, 1981: Intra-annual variation in large-scale moisture fields. J. Geophys. Res., 86, 12551264, https://doi.org/10.1029/JC086iC02p01255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rebischung, P., J. Griffiths, J. Ray, R. Schmid, X. Collilieux, and B. Garayt, 2012: IGS08: The IGS realization of ITRF2008. GPS Solutions, 16, 483494, https://doi.org/10.1007/s10291-011-0248-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, R. J., and W. P. Elliott, 2001: Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J. Climate, 14, 16021612, https://doi.org/10.1175/1520-0442(2001)014<1602:RBNHTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saastamoinen, J., 1972: Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The Use of Artificial Satellites for Geodesy, Geophys. Monogr., Vol. 15, Amer. Geophys. Union, 247–251.

    • Crossref
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, R., P. Steigenberger, G. Gendt, M. Ge, and M. Rothacher, 2007: Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J. Geod., 81 , 781798, https://doi.org/10.1007/s00190-007-0148-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, C., Q. Zhao, J. Geng, Y. Lou, M. Ge, and J. Liu, 2008: Recent development of PANDA software in GNSS data processing. International Conference on Earth Observation Data Processing and Analysis (ICEODPA), D. Li, J. Gong, and H. Wu, Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 7285), 72851S, https://doi.org/10.1117/12.816261.

    • Crossref
    • Export Citation
  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758, https://doi.org/10.1007/s00382-005-0017-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vey, S., R. Dietrich, M. Fritsche, A. Rülke, P. Steigenberger, and M. Rothacher, 2009: On the homogeneity and interpretation of precipitable water time series derived from global GPS observations. J. Geophys. Res., 114, D10101, https://doi.org/10.1029/2008JD010415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and L. Zhang, 2008: Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J. Climate, 21, 22182238, https://doi.org/10.1175/2007JCLI1944.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and L. Zhang, 2009: Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products. J. Geod., 83, 209217, https://doi.org/10.1007/s00190-008-0238-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Zhang, A. Dai, T. Van Hove, and J. Van Baelen, 2007: A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res., 112, D11107, https://doi.org/10.1029/2006JD007529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and et al. , 2017: Evaluation of precipitable water vapor from four satellite products and four reanalysis datasets against GPS measurements on the southern Tibetan Plateau. J. Climate, 30, 56995713, https://doi.org/10.1175/JCLI-D-16-0630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, P. D., 1967: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust., 15, 7073, https://doi.org/10.1109/TAU.1967.1161901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J. T., S. C. Wu, G. A. Hajj, W. I. Bertiger, and S. M. Lichten, 1993: Effects of antenna orientation on GPS carrier phase. Manuscr. Geod., 18, 9198.

    • Search Google Scholar
    • Export Citation
  • Xu, S., 1958: China’s water vapor transfer and budget. Acta Meteor. Sin., 29, 3343.

  • Zhai, P., and R. E. Eskridge, 1996: Analysis of inhomogeneities in radiosonde temperature and humidity time series. J. Climate, 9, 884894, https://doi.org/10.1175/1520-0442(1996)009<0884:AOIIRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., and R. E. Eskridge, 1997: Atmospheric water vapor over China. J. Climate, 10, 26432652, https://doi.org/10.1175/1520-0442(1997)010<2643:AWVOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Lou, J. Haase, R. Zhang, G. Zheng, J. Huang, C. Shi, and J. Liu, 2017: The use of ground-based GPS precipitable water measurements over China to assess radiosonde and ERA-Interim moisture trends and errors from 1999 to 2015. J. Climate, 30, 76437667, https://doi.org/10.1175/JCLI-D-16-0591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., A. Dai, and J. Wang, 2012: Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset. J. Climate, 25, 45494567, https://doi.org/10.1175/JCLI-D-11-00557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., J. Wang, and A. Dai, 2015: Evaluation of atmospheric precipitable water from reanalysis products using homogenized radiosonde observations over China. J. Geophys. Res. Atmos., 120, 10 70310 727, https://doi.org/10.1002/2015JD023906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb, 1997: Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res., 102, 50055017, https://doi.org/10.1029/96JB03860.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 108 108 14
PDF Downloads 100 100 9

Multiscale Variations of Precipitable Water over China Based on 1999–2015 Ground-Based GPS Observations and Evaluations of Reanalysis Products

View More View Less
  • 1 Global Navigation Satellite System Research Center, Wuhan University, Wuhan, China
  • | 2 Meteorological Observation Centre of China Meteorological Administration, Beijing, China
  • | 3 School of Electronic and Information Engineering, Beihang University, Beijing, and Global Navigation Satellite Systems Research Center, Wuhan University, Wuhan, China
  • | 4 Global Navigation Satellite Systems Research Center, Wuhan University, China
© Get Permissions
Restricted access

Abstract

The dense ground-based GPS provides a good tool to study water vapor distribution and multiscale variations, especially for linear trends on the interannual scale and short-term variations on the diurnal scale. It can also serve as an independent data source to evaluate performances of reanalyses. In this study, the 6-hourly precipitable water (PW) products at more than 260 GPS stations over China from 1999 to 2015 were analyzed and eight commonly used reanalyses, including 20CR version 2 (20CRv2), CFSR, ERA-Interim, JRA-25, JRA-55, MERRA, NCEP–NCAR, and NCEP–DOE AMIP-II, were evaluated. The climatological annual mean GPS PW distribution over China roughly shows a decreasing trend from southeast to northwest, with the largest annual and semiannual amplitudes in the lower reaches of the Yangtze River and mideastern China, respectively, and the smallest values in the Tibetan Plateau and southwestern China. All reanalyses (except for 20CRv2) can generally reproduce well the climatological annual mean PW (within 20%), annual amplitudes (within 20%), and semiannual amplitudes (within 20% except in the tropical monsoon region), but they all show wet biases in the Tibetan Plateau. Diurnal variation amplitudes reproduced by all reanalysis products are smaller than amplitudes estimated from GPS observations over China as a whole, and none of the reanalyses can capture the diurnal phases correctly. PW linear trends at most GPS stations in the recent 16 years are insignificant or with absolute values smaller than 0.10 mm yr−1. However, because of the assimilation of the unhomogenized radiosonde humidity data, most reanalyses show artificial decreasing PW trends (except in 20CRv2 and CFSR).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0419.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yidong Lou, ydlou@whu.edu.cn

Abstract

The dense ground-based GPS provides a good tool to study water vapor distribution and multiscale variations, especially for linear trends on the interannual scale and short-term variations on the diurnal scale. It can also serve as an independent data source to evaluate performances of reanalyses. In this study, the 6-hourly precipitable water (PW) products at more than 260 GPS stations over China from 1999 to 2015 were analyzed and eight commonly used reanalyses, including 20CR version 2 (20CRv2), CFSR, ERA-Interim, JRA-25, JRA-55, MERRA, NCEP–NCAR, and NCEP–DOE AMIP-II, were evaluated. The climatological annual mean GPS PW distribution over China roughly shows a decreasing trend from southeast to northwest, with the largest annual and semiannual amplitudes in the lower reaches of the Yangtze River and mideastern China, respectively, and the smallest values in the Tibetan Plateau and southwestern China. All reanalyses (except for 20CRv2) can generally reproduce well the climatological annual mean PW (within 20%), annual amplitudes (within 20%), and semiannual amplitudes (within 20% except in the tropical monsoon region), but they all show wet biases in the Tibetan Plateau. Diurnal variation amplitudes reproduced by all reanalysis products are smaller than amplitudes estimated from GPS observations over China as a whole, and none of the reanalyses can capture the diurnal phases correctly. PW linear trends at most GPS stations in the recent 16 years are insignificant or with absolute values smaller than 0.10 mm yr−1. However, because of the assimilation of the unhomogenized radiosonde humidity data, most reanalyses show artificial decreasing PW trends (except in 20CRv2 and CFSR).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0419.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yidong Lou, ydlou@whu.edu.cn

Supplementary Materials

    • Supplemental Materials (DOCX 1.61 MB)
Save