• Ablain, M., and et al. , 2015: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci., 11, 6782, https://doi.org/10.5194/os-11-67-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamber, J., and R. E. M. Riva, 2010: The sea level fingerprint of recent ice mass fluxes. Cryosphere, 4, 621627, https://doi.org/10.5194/tc-4-621-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., and C. W. Hughes, 2012: Local diagnostics to estimate density-induced sea level variations over topography and along coastlines. J. Geophys. Res., 117, C01013, https://doi.org/10.1029/2011JC007276.

    • Search Google Scholar
    • Export Citation
  • Blewitt, G., C. Kreemer, W. C. Hammond, and J. Gazeaux, 2016: MIDAS robust trend estimator for accurate GPS station velocities without step detection. J. Geophys. Res. Solid Earth, 121, 20542068, https://doi.org/10.1002/2015JB012552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bos, M. S., R. M. S. Fernandes, S. D. P. Williams, and L. Bastos, 2013: Fast error analysis of continuous GNSS observations with missing data. J. Geod., 87, 351360, https://doi.org/10.1007/s00190-012-0605-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., A. Cazenave, N. Champollion, H. Dieng, W. Llovel, R. Forsberg, K. von Schuckmann, and Y. Wada, 2017: Evaluation of the global mean sea level budget between 1993 and 2014. Surv. Geophys., 38, 309327, https://doi.org/10.1007/s10712-016-9381-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, B. F., Y. H. Wu, and Y. S. Li, 2008: Impact of artificial reservoir water impoundment on global sea level. Science, 320, 212214, https://doi.org/10.1126/science.1154580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaussard, E., F. Amelung, H. Abidin, and S.-H. Hong, 2013: Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ., 128, 150161, https://doi.org/10.1016/j.rse.2012.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2016: Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. J. Climate, 29, 53935416, https://doi.org/10.1175/JCLI-D-15-0730.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., and N. J. White, 2011: Sea-level rise from the late 19th to the early 21st century. Surv. Geophys., 32, 585602, https://doi.org/10.1007/s10712-011-9119-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., and et al. , 2011: Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, https://doi.org/10.1029/2011GL048794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, J. A., and C. S. Lingle, 1977: Future sea-level changes due to west Antarctic ice sheet fluctuations. Nature, 269, 206209, https://doi.org/10.1038/269206a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Dangendorf, S., C. Mudersbach, T. Wahl, and J. Jensen, 2013: Characteristics of intra-, inter-annual and decadal sea-level variability and the role of meteorological forcing: The long record of Cuxhaven. Ocean Dyn., 63, 209224, https://doi.org/10.1007/s10236-013-0598-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dangendorf, S., M. Marcos, G. Wöppelmann, C. P. Conrad, T. Frederikse, and R. Riva, 2017: Reassessment of 20th century global mean sea level rise. Proc. Natl. Acad. Sci. USA, 114, 59465951, https://doi.org/10.1073/pnas.1616007114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2015: Detecting changes in the transport of the Gulf Stream and the Atlantic overturning circulation from coastal sea level data: The extreme decline in 2009–2010 and estimated variations for 1935–2012. Global Planet. Change, 129, 2336, https://doi.org/10.1016/j.gloplacha.2015.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., Y. Li, and G. Meyers, 2004: Multidecadal variations of Fremantle sea level: Footprint of climate variability in the tropical Pacific. Geophys. Res. Lett., 31, L16302, https://doi.org/10.1029/2004GL019947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederikse, T., R. Riva, M. Kleinherenbrink, Y. Wada, M. van den Broeke, and B. Marzeion, 2016: Closing the sea level budget on a regional scale: Trends and variability on the northwestern European continental shelf. Geophys. Res. Lett., 43, 10 86410 872, https://doi.org/10.1002/2016GL070750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederikse, T., K. Simon, C. A. Katsman, and R. Riva, 2017: The sea-level budget along the northwest Atlantic coast: GIA, mass changes, and large-scale ocean dynamics. J. Geophys. Res. Oceans, 122, 54865501, https://doi.org/10.1002/2017JC012699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and et al. , 2013: Twentieth-century global-mean sea level rise: Is the whole greater than the sum of the parts? J. Climate, 26, 44764499, https://doi.org/10.1175/JCLI-D-12-00319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, B. D., and P. R. Thompson, 2015: Considerations for estimating the 20th century trend in global mean sea level. Geophys. Res. Lett., 42, 41024109, https://doi.org/10.1002/2015GL064177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, B. D., P. R. Thompson, W. C. Hammond, G. Blewitt, and R. D. Ray, 2016: Assessing the impact of vertical land motion on twentieth century global mean sea level estimates. J. Geophys. Res. Oceans, 121, 49804993, https://doi.org/10.1002/2016JC011747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, C. C., E. Morrow, R. E. Kopp, and J. X. Mitrovica, 2015: Probabilistic reanalysis of twentieth-century sea-level rise. Nature, 517, 481484, https://doi.org/10.1038/nature14093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, C. C., E. Morrow, R. E. Kopp, and J. X. Mitrovica, 2017: On the robustness of Bayesian fingerprinting estimates of global sea level change. J. Climate, 30, 30253038, https://doi.org/10.1175/JCLI-D-16-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, E. M., J. L. Davis, M. E. Tamisiea, and M. Lidberg, 2010: Combination of geodetic observations and models for glacial isostatic adjustment fields in Fennoscandia. J. Geophys. Res., 115, B07403, https://doi.org/10.1029/2009JB006967.

    • Search Google Scholar
    • Export Citation
  • Hogarth, P., 2014: Preliminary analysis of acceleration of sea level rise through the twentieth century using extended tide gauge data sets (August 2014). J. Geophys. Res. Oceans, 119, 76457659, https://doi.org/10.1002/2014JC009976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holgate, S. J., and et al. , 2013: New data systems and products at the permanent service for mean sea level. J. Coastal Res., 29, 493504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and M. P. Meredith, 2006: Coherent sea-level fluctuations along the global continental slope. Philos. Trans. Roy. Soc. London, 364A, 885901, https://doi.org/10.1098/rsta.2006.1744.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287299, https://doi.org/10.1007/s10872-009-0027-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jevrejeva, S., A. Grinsted, J. C. Moore, and S. Holgate, 2006: Nonlinear trends and multiyear cycles in sea level records. J. Geophys. Res., 111, C09012, https://doi.org/10.1029/2005JC003229.

    • Search Google Scholar
    • Export Citation
  • Jevrejeva, S., J. C. Moore, A. Grinsted, A. P. Matthews, and G. Spada, 2014: Trends and acceleration in global and regional sea levels since 1807. Global Planet. Change, 113, 1122, https://doi.org/10.1016/j.gloplacha.2013.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasdin, N. J., 1995: Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation. Proc. IEEE, 83, 802827, https://doi.org/10.1109/5.381848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kjeldsen, K. K., and et al. , 2015: Spatial and temporal distribution of mass loss from the Greenland ice sheet since AD 1900. Nature, 528, 396400, https://doi.org/10.1038/nature16183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolker, A. S., M. A. Allison, and S. Hameed, 2011: An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophys. Res. Lett., 38, L21404, https://doi.org/10.1029/2011GL049458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., J. H. Jungclaus, and J. Marotzke, 2007: Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate. Geophys. Res. Lett., 34, L06307, https://doi.org/10.1029/2006GL029106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, B., and et al. , 2011: High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ., 9, 494502, https://doi.org/10.1890/100125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and et al. , 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Marzeion, B., P. W. Leclercq, J. G. Cogley, and A. H. Jarosch, 2015: Brief communication: Global reconstructions of glacier mass change during the 20th century are consistent. Cryosphere, 9, 23992404, https://doi.org/10.5194/tc-9-2399-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28 pp., http://teos-10.org/pubs/Getting_Started.pdf.

  • Minderhoud, P. S. J., G. Erkens, V. H. Pham, V. T. Bui, L. Erban, H. Kooi, and E. Stouthamer, 2017: Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ. Res. Lett., 12, 064006, https://doi.org/10.1088/1748-9326/aa7146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitrovica, J. X., M. E. Tamisiea, J. L. Davis, and G. A. Milne, 2001: Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409, 10261029, https://doi.org/10.1038/35059054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitrovica, J. X., C. C. Hay, E. Morrow, R. E. Kopp, M. Dumberry, and S. Stanley, 2015: Reconciling past changes in Earth’s rotation with 20th century global sea-level rise: Resolving Munk’s enigma. Sci. Adv., 1, e1500679, https://doi.org/10.1126/sciadv.1500679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, J. C., S. Jevrejeva, and A. Grinsted, 2011: The historical global sea-level budget. Ann. Glaciol., 52, 814, https://doi.org/10.3189/172756411799096196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the Ice-Age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149, https://doi.org/10.1146/annurev.earth.32.082503.144359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., D. F. Argus, and R. Drummond, 2015: Space geodesy constrains Ice Age terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth, 120, 450487, https://doi.org/10.1002/2014JB011176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., S. Dangendorf, R. M. Ponte, and M. Marcos, 2016: Annual sea level changes on the North American northeast coast: Influence of local winds and barotropic motions. J. Climate, 29, 48014816, https://doi.org/10.1175/JCLI-D-16-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purcell, A., P. Tregoning, and A. Dehecq, 2016: An assessment of the ICE6G_C (VM5a) glacial isostatic adjustment model. J. Geophys. Res. Solid Earth, 121, 39393950, https://doi.org/10.1002/2015JB012742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and B. C. Douglas, 2011: Experiments in reconstructing twentieth-century sea levels. Prog. Oceanogr., 91, 496515, https://doi.org/10.1016/j.pocean.2011.07.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., S. B. Luthcke, and T. van Dam, 2013: Monthly crustal loading corrections for satellite altimetry. J. Atmos. Oceanic Technol., 30, 9991005, https://doi.org/10.1175/JTECH-D-12-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riva, R. E. M., T. Frederikse, M. A. King, B. Marzeion, and M. R. van den Broeke, 2017: Brief communication: The global signature of post-1900 land ice wastage on vertical land motion. Cryosphere, 11, 13271332, https://doi.org/10.5194/tc-11-1327-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roquet, F., G. Madec, T. J. McDougall, and P. M. Barker, 2015: Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Ocean Modell., 90, 2943, https://doi.org/10.1016/j.ocemod.2015.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabadini, R., B. Vermeersen, and G. Cambiotti, 2016: Global Dynamics of the Earth: Applications of Viscoelastic Relaxation Theory to Solid-Earth and Planetary Geophysics. Springer, 364 pp., https://doi.org/10.1007/978-94-017-7552-6.

    • Crossref
    • Export Citation
  • Sallenger, A. H., Jr., K. S. Doran, and P. A. Howd, 2012: Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Climate Change, 2, 884888, https://doi.org/10.1038/nclimate1597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and et al. , 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, https://doi.org/10.1126/science.1228102; Corrigendum, 338, 1539, https://doi.org/10.1126/science.338.6114.1539-a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slangen, A. B. A., R. S. W. van de Wal, Y. Wada, and L. L. A. Vermeersen, 2014: Comparing tide gauge observations to regional patterns of sea-level change (1961–2003). Earth Syst. Dyn., 5, 243255, https://doi.org/10.5194/esd-5-243-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slangen, A. B. A., J. A. Church, C. Agosta, X. Fettweis, B. Marzeion, and K. Richter, 2016: Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat. Climate Change, 6, 701705, https://doi.org/10.1038/nclimate2991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamisiea, M. E., 2011: Ongoing glacial isostatic contributions to observations of sea level change. Geophys. J. Int., 186, 10361044, https://doi.org/10.1111/j.1365-246X.2011.05116.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamisiea, M. E., E. M. Hill, R. M. Ponte, J. L. Davis, I. Velicogna, and N. T. Vinogradova, 2010: Impact of self-attraction and loading on the annual cycle in sea level. J. Geophys. Res., 115, C07004, https://doi.org/10.1029/2009JC005687.

    • Search Google Scholar
    • Export Citation
  • Thompson, P. R., and M. A. Merrifield, 2014: A unique asymmetry in the pattern of recent sea level change. Geophys. Res. Lett., 41, 76757683, https://doi.org/10.1002/2014GL061263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, P. R., B. D. Hamlington, F. W. Landerer, and S. Adhikari, 2016: Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophys. Res. Lett., 43, 10 40310 411, https://doi.org/10.1002/2016GL070552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., E. M. Enderlin, I. M. Howat, P. Kuipers Munneke, B. P. Y. Noël, W. J. van de Berg, E. van Meijgaard, and B. Wouters, 2016: On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere, 10, 19331946, https://doi.org/10.5194/tc-10-1933-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Wessem, J. M., and et al. , 2014: Improved representation of east Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol., 60, 761770, https://doi.org/10.3189/2014JoG14J051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., D. Wisser, and M. F. P. Bierkens, 2014: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn., 5, 1540, https://doi.org/10.5194/esd-5-15-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., M.-H. Lo, P. J.-F. Yeh, J. T. Reager, J. S. Famiglietti, R.-J. Wu, and Y.-H. Tseng, 2016: Fate of water pumped from underground and contributions to sea-level rise. Nat. Climate Change, 6, 777780, https://doi.org/10.1038/nclimate3001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watkins, M. M., D. N. Wiese, D.-N. Yuan, C. Boening, and F. W. Landerer, 2015: Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth, 120, 26482671, https://doi.org/10.1002/2014JB011547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J., and C. W. Hughes, 2013: The coherence of small island sea level with the wider ocean: A model study. Ocean Sci., 9, 111119, https://doi.org/10.5194/os-9-111-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wöppelmann, G., and M. Marcos, 2016: Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys., 54, 6492, https://doi.org/10.1002/2015RG000502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wöppelmann, G., C. Letetrel, A. Santamaria, M.-N. Bouin, X. Collilieux, Z. Altamimi, S. D. P. Williams, and B. M. Miguez, 2009: Rates of sea-level change over the past century in a geocentric reference frame. Geophys. Res. Lett., 36, L12607, http://doi.org/10.1029/2009GL038720.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1648 1648 75
PDF Downloads 957 957 68

A Consistent Sea-Level Reconstruction and Its Budget on Basin and Global Scales over 1958–2014

View More View Less
  • 1 Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands
  • | 2 National Oceanography Centre, Liverpool, United Kingdom
  • | 3 Department of Geoscience and Remote Sensing, Delft University of Technology, Netherlands
  • | 4 Research Institute for Water and Environment, University of Siegen, Siegen, Germany
© Get Permissions
Restricted access

Abstract

Different sea level reconstructions show a spread in sea level rise over the last six decades and it is not yet certain whether the sum of contributors explains the reconstructed rise. Possible causes for this spread are, among others, vertical land motion at tide-gauge locations and the sparse sampling of the spatially variable ocean. To assess these open questions, reconstructed sea level and the role of the contributors are investigated on a local, basin, and global scale. High-latitude seas are excluded. Tide-gauge records are combined with observations of vertical land motion, independent estimates of ice-mass loss, terrestrial water storage, and barotropic atmospheric forcing in a self-consistent framework to reconstruct sea level changes on basin and global scales, which are compared to the estimated sum of contributing processes. For the first time, it is shown that for most basins the reconstructed sea level trend and acceleration can be explained by the sum of contributors, as well as a large part of the decadal variability. The sparsely sampled South Atlantic Ocean forms an exception. The global-mean sea level reconstruction shows a trend of 1.5 ± 0.2 mm yr−1 over 1958–2014 (1σ), compared to 1.3 ± 0.1 mm yr−1 for the sum of contributors. Over the same period, the reconstruction shows a positive acceleration of 0.07 ± 0.02 mm yr−2, which is also in agreement with the sum of contributors, which shows an acceleration of 0.07 ± 0.01 mm yr−2. Since 1993, both reconstructed sea level and the sum of contributors show good agreement with altimetry estimates.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0502.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas Frederikse, t.frederikse@tudelft.nl

Abstract

Different sea level reconstructions show a spread in sea level rise over the last six decades and it is not yet certain whether the sum of contributors explains the reconstructed rise. Possible causes for this spread are, among others, vertical land motion at tide-gauge locations and the sparse sampling of the spatially variable ocean. To assess these open questions, reconstructed sea level and the role of the contributors are investigated on a local, basin, and global scale. High-latitude seas are excluded. Tide-gauge records are combined with observations of vertical land motion, independent estimates of ice-mass loss, terrestrial water storage, and barotropic atmospheric forcing in a self-consistent framework to reconstruct sea level changes on basin and global scales, which are compared to the estimated sum of contributing processes. For the first time, it is shown that for most basins the reconstructed sea level trend and acceleration can be explained by the sum of contributors, as well as a large part of the decadal variability. The sparsely sampled South Atlantic Ocean forms an exception. The global-mean sea level reconstruction shows a trend of 1.5 ± 0.2 mm yr−1 over 1958–2014 (1σ), compared to 1.3 ± 0.1 mm yr−1 for the sum of contributors. Over the same period, the reconstruction shows a positive acceleration of 0.07 ± 0.02 mm yr−2, which is also in agreement with the sum of contributors, which shows an acceleration of 0.07 ± 0.01 mm yr−2. Since 1993, both reconstructed sea level and the sum of contributors show good agreement with altimetry estimates.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0502.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas Frederikse, t.frederikse@tudelft.nl

Supplementary Materials

    • Supplemental Materials (PDF 1.03 MB)
Save