• Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres, 2012: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science, 337, 835839, https://doi.org/10.1126/science.1222978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avery, M. A., S. M. Davis, K. H. Rosenlof, H. Ye, and A. Dessler, 2017: Large anomalies in lower stratospheric water vapour and ice during the 2015–2016 El Niño. Nat. Geosci., 10, 405409, https://doi.org/10.1038/ngeo2961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827, https://doi.org/10.5194/acp-11-817-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonazzola, M., and P. H. Haynes, 2004: A trajectory-based study of the tropical tropopause region. J. Geophys. Res., 109, D20112, https://doi.org/10.1029/2003JD004356.

    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, https://doi.org/10.1002/qj.49707532603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., L. M. Polvani, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environ. Res. Lett., 9, 024014, https://doi.org/10.1088/1748-9326/9/2/024014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and et al. , 2009: Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of Chemistry Climate Models. Atmos. Chem. Phys., 9, 89358948, https://doi.org/10.5194/acp-9-8935-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo, N., R. R. García, W. J. Randel, and D. R. Marsh, 2010: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci., 67, 23312340, https://doi.org/10.1175/2010JAS3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camp, C. D., and K. K. Tung, 2007: Stratospheric polar warming by ENSO in winter: A statistical study. Geophys. Res. Lett., 34, L04809, https://doi.org/10.1029/2006GL028521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiou, E. W., L. W. Thomason, and W. P. Chu, 2006: Variability of stratospheric water vapor inferred from SAGE II, HALOE, and Boulder (Colorado) balloon measurements. J. Climate, 19, 41214133, https://doi.org/10.1175/JCLI3841.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and et al. , 2016: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: A long-term database for climate studies. Earth Syst. Sci. Data, 8, 461490, https://doi.org/10.5194/essd-8-461-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, and K. H. Rosenlof, 2013: Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA, 110, 18 08718 091, https://doi.org/10.1073/pnas.1310344110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhomse, S., M. Weber, and J. Burrows, 2008: The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor. Atmos. Chem. Phys., 8, 471480, https://doi.org/10.5194/acp-8-471-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2007: Structure of the annual-mean equatorial planetary waves in the ERA-40 reanalyses. J. Atmos. Sci., 64, 28622880, https://doi.org/10.1175/JAS3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., J. M. Wallace, and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 24992513, https://doi.org/10.1175/JAS3486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and Q. Fu, 2017: A warming tropical central Pacific dries the lower stratosphere. Climate Dyn., https://doi.org/10.1007/s00382-017-3774-y, in press.

    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, https://doi.org/10.1038/ngeo1129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T., 1978: On the mean meridional mass motions of the stratosphere and mesosphere. J. Atmos. Sci., 35, 23252333, https://doi.org/10.1175/1520-0469(1978)035<2325:OTMMMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, S. J., R. Toumi, J. E. Harries, M. P. Chipperfield, and J. M. Russell, 1998: Trends in stratospheric humidity and the sensitivity of ozone to these trends. J. Geophys. Res., 103, 87158725, https://doi.org/10.1029/98JD00265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández, N. C., R. R. García, R. G. Herrera, D. G. Puyol, L. G. Presa, E. H. Martín, and P. R. Rodríguez, 2004: Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J. Climate, 17, 39343946, https://doi.org/10.1175/1520-0442(2004)017<3934:AOTESI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., and P. J. Kushner, 2011: The role of linear interference in the annular mode response to tropical SST forcing. J. Climate, 24, 778794, https://doi.org/10.1175/2010JCLI3735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., and P. J. Kushner, 2013: Linear interference and the northern annular mode response to tropical SST forcing: Sensitivity to model configuration. J. Geophys. Res. Atmos., 118, 42674279, https://doi.org/10.1002/jgrd.50385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M. de F., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 33093312, https://doi.org/10.1029/1999GL010487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., 2013: Ocean–atmosphere interactions: Bottom up in the tropics. Nat. Climate Change, 3, 957958, https://doi.org/10.1038/nclimate2039.

  • Fu, Q., S. Solomon, and P. Lin, 2010: On the seasonal dependence of tropical lower-stratospheric temperature trends. Atmos. Chem. Phys., 10, 26432653, https://doi.org/10.5194/acp-10-2643-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res., 110, D24108, https://doi.org/10.1029/2005JD006019.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., M. Bonazzola, P. H. Haynes, and T. Peter, 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res., 110, D08107, https://doi.org/10.1029/2004JD005516.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. Dessler, T. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, https://doi.org/10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., N. Calvo, R. R. García, and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res., 111, D06101, https://doi.org/10.1029/2005JD006061.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, L. D. Oman, L. Wang, and M. M. Hurwitz, 2013a: Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone. J. Geophys. Res. Atmos., 118, 96589672, https://doi.org/10.1002/jgrd.50772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., M. M. Hurwitz, D. W. Waugh, and A. H. Butler, 2013b: Are the teleconnections of central Pacific and eastern Pacific El Niño distinct in boreal wintertime? Climate Dyn., 41, 18351852, https://doi.org/10.1007/s00382-012-1570-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., M. M. Hurwitz, L. D. Oman, and D. W. Waugh, 2013c: Contrasting effects of central Pacific and eastern Pacific El Niño on stratospheric water vapor. Geophys. Res. Lett., 40, 41154120, https://doi.org/10.1002/grl.50677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and P. M. de F. Forster, 2002: A climatology of the tropical tropopause layer. J. Meteor. Soc. Japan, 80, 911924, https://doi.org/10.2151/jmsj.80.911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and et al. , 2010: Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends. J. Geophys. Res., 115, D00M08, https://doi.org/10.1029/2009JD013638.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goss, M., and S. B. Feldstein, 2017: Why do similar patterns of tropical convection yield extratropical circulation anomalies of opposite sign? J. Atmos. Sci., 74, 487511, https://doi.org/10.1175/JAS-D-16-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and D. W. J. Thompson, 2012: Equatorial planetary waves and their signature in atmospheric variability. J. Atmos. Sci., 69, 857874, https://doi.org/10.1175/JAS-D-11-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and D. W. J. Thompson, 2013: On the signatures of equatorial and extratropical wave forcing in tropical tropopause layer temperatures. J. Atmos. Sci., 70, 10841102, https://doi.org/10.1175/JAS-D-12-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1993: An examination of observed Southern Oscillation effects in the Northern Hemisphere stratosphere. J. Atmos. Sci., 50, 34683474, https://doi.org/10.1175/1520-0469(1993)050<3468:AEOOSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and et al. , 2014: Vertical structure of stratospheric water vapour trends derived from merged satellite data. Nat. Geosci., 7, 768776, https://doi.org/10.1038/ngeo2236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604, https://doi.org/10.1002/qj.49712454911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Climate, 25, 14131430, https://doi.org/10.1175/JCLI-D-11-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and A. Gettelman, 2001: Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett., 28, 27992802, https://doi.org/10.1029/2001GL013148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, https://doi.org/10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, D. Z., W. S. Tian, F. Xie, J. C. Shu, and S. Dhomse, 2014: Effects of meridional sea surface temperature changes on stratospheric temperature and circulation. Adv. Atmos. Sci., 31, 888900, https://doi.org/10.1007/s00376-013-3152-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, D. Z., W. S. Tian, Z. Y. Guan, Y. P. Guo, and S. Dhomse, 2016: Longitudinal asymmetric trends of tropical cold-point tropopause temperature and their link to strengthened Walker circulation. J. Climate, 29, 77557771, https://doi.org/10.1175/JCLI-D-15-0851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, https://doi.org/10.1038/ngeo381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., N. J. Livesey, H. Su, L. Neary, J. C. McConnell, and N. A. D. Richards, 2007: Connecting surface emissions, convective uplifting, and long-range transport of carbon monoxide in the upper troposphere: New observations from the Aura Microwave Limb Sounder. Geophys. Res. Lett., 34, L18812, https://doi.org/10.1029/2007GL030638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., H. Su, C. Zhai, L. Wu, K. Minschwaner, A. M. Molod, and A. M. Tompkins, 2015: An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations. J. Geophys. Res. Atmos., 120, 11 46811 485, https://doi.org/10.1002/2015JD023752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., J. N. Lee, and K. Hamilton, 2014: Interannual variations of stratospheric water vapor in MLS observations and climate model simulations. J. Atmos. Sci., 71, 40724085, https://doi.org/10.1175/JAS-D-14-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D. B., E. J. Hintsa, J. G. Anderson, and D. W. Keith, 1999: The effect of climate change on ozone depletion through changes in stratospheric water vapour. Nature, 402, 399401, https://doi.org/10.1038/46521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konopka, P., F. Ploeger, M. C. Tao, and M. Riese, 2016: Zonally resolved impact of ENSO on the stratospheric circulation and water vapor entry values. J. Geophys. Res. Atmos., 121, 11 48611 501, https://doi.org/10.1002/2015JD024698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., and R. R. García, 2007: Attribution of decadal variability in lower-stratospheric tropical ozone. Geophys. Res. Lett., 34, L21807, https://doi.org/10.1029/2007GL030935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J. F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2542.

  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, https://doi.org/10.1256/qj.02.123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and T. J. Dunkerton, 1997: The influence of the quasi-biennial oscillation on global constituent distributions. J. Geophys. Res., 102, 21 73121 743, https://doi.org/10.1029/97JD01689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, https://doi.org/10.1038/ngeo1733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, J. M. Russell, A. Roche, and J. W. Waters, 1998: Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data. J. Atmos. Sci., 55, 163185, https://doi.org/10.1175/1520-0469(1998)055<0163:SCAQVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, H. Vömel, G. E. Nedoluha, and P. Forster, 2006: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer–Dobson circulation. J. Geophys. Res., 111, D12312, https://doi.org/10.1029/2005JD006744.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. García, N. Calvo, and D. Marsh, 2009: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36, L15822, https://doi.org/10.1029/2009GL039343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raval, A., and V. Ramanathan, 1989: Observational determination of the greenhouse effect. Nature, 342, 758761, https://doi.org/10.1038/342758a0.

  • Ren, R. C., M. Cai, C. Xiang, and G. Wu, 2012: Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Climate Dyn., 38, 13451358, https://doi.org/10.1007/s00382-011-1137-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, R. C., J. Rao, G. Wu, and M. Cai, 2017: Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations. Climate Dyn., 48, 28592879, https://doi.org/10.1007/s00382-016-3238-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, https://doi.org/10.1002/qj.49712253408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 2003: How water enters the stratosphere. Science, 302, 16911692, https://doi.org/10.1126/science.1092703.

  • Rosenlof, K. H., and G. C. Reid, 2008: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection. J. Geophys. Res., 113, D06107, https://doi.org/10.1029/2007JD009109.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., and et al. , 2001: Stratospheric water vapor increases over the past half-century. Geophys. Res. Lett., 28, 11951198, https://doi.org/10.1029/2000GL012502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, D. R. Jackson, and R. Swinbank, 2003: Can changes in ENSO activity help to explain increasing stratospheric water vapor? Geophys. Res. Lett., 30, 1880, https://doi.org/10.1029/2003GL017591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schieferdecker, T., S. Lossow, G. P. Stiller, and T. von Clarmann, 2015: Is there a solar signal in lower stratospheric water vapour? Atmos. Chem. Phys., 15, 98519863, https://doi.org/10.5194/acp-15-9851-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and A. E. Dessler, 2000: On the control of stratospheric humidity. Geophys. Res. Lett., 27, 25132516, https://doi.org/10.1029/2000GL011438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., 2001: Climate and ozone response to increased stratospheric water vapor. Geophys. Res. Lett., 28, 15511554, https://doi.org/10.1029/1999GL011197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, and D. Dee, 2007a: Update on ERA-Interim. ECMWF Newsletter, No. 111, ECMWF, Reading, United Kingdom, 5.

  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007b: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35, https://doi.org/10.21957/pocnex23c6.

    • Crossref
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G. K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, https://doi.org/10.1126/science.1182488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S. W., and et al. , 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489, https://doi.org/10.1126/science.1155939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S. W., and et al. , 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, https://doi.org/10.1029/2010JD014271.

    • Search Google Scholar
    • Export Citation
  • Stenke, A., and V. Grewe, 2005: Simulation of stratospheric water vapor trends: Impact on stratospheric ozone chemistry. Atmos. Chem. Phys., 5, 12571272, https://doi.org/10.5194/acp-5-1257-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., W. G. Read, J. H. Jiang, J. W. Waters, D. L. Wu, and E. J. Fetzer, 2006: Enhanced positive water vapor feedback associated with tropical deep convection: New evidence from Aura MLS. Geophys. Res. Lett., 33, L05709, https://doi.org/10.1029/2005GL025505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, W. S., M. Chipperfield, and D. R. , 2009: Impact of increasing stratospheric water vapor on ozone depletion and temperature change. Adv. Atmos. Sci., 26, 423437, https://doi.org/10.1007/s00376-009-0423-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, W. S., M. P. Chipperfield, D. S. Stevenson, R. Damoah, S. Dhomse, A. Dudhia, H. Pumphrey, and P. Bernath, 2010: Effects of stratosphere‐troposphere chemistry coupling on tropospheric ozone. J. Geophys. Res., 115, D00M04, https://doi.org/10.1029/2009JD013515.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: On the relationship between tropical convection and sea surface temperature. J. Climate, 14, 633637, https://doi.org/10.1175/1520-0442(2001)014<0633:OTRBTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S., D. Dee, S. Kobayashi, P. Berrisford, and A. Simmons, 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 12–18, https://doi.org/10.21957/byinox4wot.

    • Crossref
    • Export Citation
  • Virts, K. S., and J. M. Wallace, 2010: Annual, interannual, and intraseasonal variability of tropical tropopause transition layer cirrus. J. Atmos. Sci., 67, 30973112, https://doi.org/10.1175/2010JAS3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., W. J. Randel, A. E. Dessler, M. R. Schoeberl, and D. E. Kinnison, 2014: Trajectory model simulations of ozone (O3) and carbon monoxide (CO) in the lower stratosphere. Atmos. Chem. Phys., 14, 71357147, https://doi.org/10.5194/acp-14-7135-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., A. Dessler, M. Schoeberl, W. Randel, and J.-E. Kim, 2015: The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor. Atmos. Chem. Phys., 15, 35173526, https://doi.org/10.5194/acp-15-3517-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W. K., K. Matthes, T. Schmidt, and L. Neef, 2013: Recent variability of the tropical tropopause inversion layer. Geophys. Res. Lett., 40, 63086313, https://doi.org/10.1002/2013GL058350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W. K., K. Matthes, and T. Schmidt, 2015: Quantifying contributions to the recent temperature variability in the tropical tropopause layer. Atmos. Chem. Phys., 15, 58155826, https://doi.org/10.5194/acp-15-5815-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W. K., K. Matthes, N. E. Omrani, and M. Latif, 2016: Decadal variability of tropical tropopause temperature and its relationship to the Pacific decadal oscillation. Sci. Rep., 6, 29537, https://doi.org/10.1038/srep29537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 46744691, https://doi.org/10.1175/JCLI-3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2003: Scientific assessment of ozone depletion: 2002. Global Ozone Research and Monitoring Project Rep. 47, 498 pp., https://www.wmo.int/pages/prog/arep/gaw/ozone_2002/ozone_2002.html.

  • Xie, F., W. Tian, J. Austin, J. Li, H. Tian, J. Shu, and C. Chen, 2011: The effect of ENSO activity on lower stratospheric water vapor. Atmos. Chem. Phys. Discuss., 11, 41414166, https://doi.org/10.5194/acpd-11-4141-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys., 12, 52595273, https://doi.org/10.5194/acp-12-5259-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., and et al. , 2016: A connection from Arctic stratospheric ozone to El Nino–Southern Oscillation. Environ. Res. Lett., 11, 124026, https://doi.org/10.1088/1748-9326/11/12/124026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X. H., C. R. Ho, Q. Zheng, and V. Klemas, 1992: Temperature and size variabilities of the western Pacific warm pool. Science, 258, 16431645, https://doi.org/10.1126/science.258.5088.1643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and H. Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, https://doi.org/10.1029/2006JD007654.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. S. Tian, M. P. Chipperfield, F. Xie, and J. Huang, 2016: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Climate Change, 6, 10941099, https://doi.org/10.1038/nclimate3136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., J. Li, F. Xie, R. Ding, Y. Li, S. Zhao, J. Zhang, and Y. Li, 2017: The effects of the Indo-Pacific warm pool on the stratosphere. Climate Dyn., https://doi.org/10.1007/s00382-017-3584-2, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 87 18
PDF Downloads 78 78 14

Effect of the Indo-Pacific Warm Pool on Lower-Stratospheric Water Vapor and Comparison with the Effect of ENSO

View More View Less
  • 1 College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
  • | 2 Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China
  • | 3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 4 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 5 Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
© Get Permissions
Restricted access

Abstract

Time-slice experiments with the Whole Atmosphere Community Climate Model, version 4 (WACCM4), and composite analysis with satellite observations are used to demonstrate that the Indo-Pacific warm pool (IPWP) can significantly affect lower-stratospheric water vapor. It is found that a warmer IPWP significantly dries the stratospheric water vapor by causing a broad cooling of the tropopause, and vice versa for a colder IPWP. Such imprints in tropopause temperature are driven by a combination of variations in the Brewer–Dobson circulation in the stratosphere and deep convection in the troposphere. Changes in deep convection associated with El Niño–Southern Oscillation (ENSO) reportedly have a small zonal mean effect on lower-stratospheric water vapor for strong zonally asymmetric effects on tropopause temperature. In contrast, IPWP events have zonally uniform imprints on tropopause temperature. This is because equatorial planetary waves forced by latent heat release from deep convection project strongly onto ENSO but weakly onto IPWP events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Zhou, zhouxin13@mails.ucas.ac.cn

Abstract

Time-slice experiments with the Whole Atmosphere Community Climate Model, version 4 (WACCM4), and composite analysis with satellite observations are used to demonstrate that the Indo-Pacific warm pool (IPWP) can significantly affect lower-stratospheric water vapor. It is found that a warmer IPWP significantly dries the stratospheric water vapor by causing a broad cooling of the tropopause, and vice versa for a colder IPWP. Such imprints in tropopause temperature are driven by a combination of variations in the Brewer–Dobson circulation in the stratosphere and deep convection in the troposphere. Changes in deep convection associated with El Niño–Southern Oscillation (ENSO) reportedly have a small zonal mean effect on lower-stratospheric water vapor for strong zonally asymmetric effects on tropopause temperature. In contrast, IPWP events have zonally uniform imprints on tropopause temperature. This is because equatorial planetary waves forced by latent heat release from deep convection project strongly onto ENSO but weakly onto IPWP events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Zhou, zhouxin13@mails.ucas.ac.cn
Save