• Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., L. M. V. Carvalho, C. Jones, and M. S. Reboita, 2014: Precipitation over eastern South America and the South Atlantic Sea surface temperature during neutral ENSO periods. Climate Dyn., 42, 15531568, https://doi.org/10.1007/s00382-013-1832-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourlès, B., and et al. , 2008: The PIRATA program: History, accomplishments, and future directions. Bull. Amer. Meteor. Soc., 89, 11111125, https://doi.org/10.1175/2008BAMS2462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breugem, W.-P., P. Chang, C. J. Jang, J. Mignot, and W. Hazeleger, 2008: Barrier layers and tropical Atlantic SST biases in coupled GCMs. Tellus, 60A, 885897, https://doi.org/10.1111/j.1600-0870.2008.00343.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. H. Huang, 1994: Warm events in the tropical Atlantic. J. Phys. Oceanogr., 24, 888903, https://doi.org/10.1175/1520-0485(1994)024<0888:WEITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Kushnir, and A. Giannini, 2002: Deconstructing Atlantic intertropical convergence zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107, 4004, https://doi.org/10.1029/2000JD000307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles, V. J., M. T. Brooks, J. Hopkins, M. R. Stukel, P. L. Yager, and R. R. Hood, 2013: The pathways and properties of the Amazon River Plume in the tropical North Atlantic Ocean. J. Geophys. Res. Oceans, 118, 68946913, https://doi.org/10.1002/2013JC008981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and W. S. Kessler, 2009: Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr., 39, 12001215, https://doi.org/10.1175/2008JPO4064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da-Allada, C. Y., G. Alory, Y. du Penhoat, E. Kestenare, F. Durand, and N. M. Hounkonnou, 2013: Seasonal mixed-layer salinity balance in the tropical Atlantic Ocean: Mean state and seasonal cycle. J. Geophys. Res. Oceans, 118, 332345, https://doi.org/10.1029/2012JC008357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., H. C. Graber, and M. J. Caruso, 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19, 20492062, https://doi.org/10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996a: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, https://doi.org/10.1029/95JC03190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996b: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2009: Impact of barrier layer thickness on SST in the central tropical North Atlantic. J. Climate, 22, 285299, https://doi.org/10.1175/2008JCLI2308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., S. A. Grodsky, J. A. Carton, and M. J. McPhaden, 2003: Seasonal mixed layer heat budget of the tropical Atlantic Ocean. J. Geophys. Res., 108, 3146, https://doi.org/10.1029/2002JC001584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., M. J. McPhaden, and R. Lumpkin, 2012: A strong Atlantic meridional mode event in 2009: The role of mixed layer dynamics. J. Climate, 25, 363380, https://doi.org/10.1175/JCLI-D-11-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., C. Schmid, and R. Lumpkin, 2013a: Seasonal cycle of the mixed layer heat budget in the northeastern tropical Atlantic Ocean. J. Climate, 26, 81698188, https://doi.org/10.1175/JCLI-D-13-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., A. T. Evan, H. P. Freitag, S. Brown, and M. J. McPhaden, 2013b: Dust accumulation biases in PIRATA shortwave radiation records. J. Atmos. Oceanic Technol., 30, 14141432, https://doi.org/10.1175/JTECH-D-12-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., C. Schmid, and R. Lumpkin, 2015: Transport of surface freshwater from the equatorial to the subtropical North Atlantic Ocean. J. Phys. Oceanogr., 45, 10861102, https://doi.org/10.1175/JPO-D-14-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitag, H. P., M. E. McCarty, C. Nosse, R. Lukas, M. J. McPhaden, and M. F. Cronin, 1999: COARE Seacat data: Calibrations and quality control procedures. NOAA Tech. Memo. ERL PMEL-115, 89 pp.

  • Gentemann, C. L., F. J. Wentz, C. A. Mears, and D. K. Smith, 2004: In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res., 109, C04021, https://doi.org/10.1029/2003JC002092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giarolla, E., P. Nobre, M. Malagutti, and L. P. Pezzi, 2005: The Atlantic Equatorial Undercurrent: PIRATA observations and simulations with GFDL Modular Ocean Model at CPTEC. Geophys. Res. Lett., 32, L10617, https://doi.org/10.1029/2004GL022206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordani, H., and G. Caniaux, 2014: Lagrangian sources of frontogenesis in the equatorial Atlantic front. Climate Dyn., 43, 31473162, https://doi.org/10.1007/s00382-014-2293-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., J. A. Carton, C. Provost, J. Servain, J. A. Lorenzzetti, and M. J. McPhaden, 2005: Tropical instability waves at 0°N, 23°W in the Atlantic: A case study using Pilot Research Moored Array in the Tropical Atlantic (PIRATA) mooring data. J. Geophys. Res., 110, C08010, https://doi.org/10.1029/2005JC002941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., P. J. Webster, J.-L. Lin, W. T. Liu, R. Fu, D. Yuan, and A. Hu, 2008: Dynamics of intraseasonal sea level and thermocline variability in the equatorial Atlantic during 2002–03. J. Phys. Oceanogr., 38, 945967, https://doi.org/10.1175/2008JPO3854.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hummels, R., M. Dengler, and B. Bourlès, 2013: Seasonal and regional variability of upper ocean diapycnal heat flux in the Atlantic cold tongue. Prog. Oceanogr., 111, 5274, https://doi.org/10.1016/j.pocean.2012.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hummels, R., M. Dengler, P. Brandt, and M. Schlundt, 2014: Diapycnal heat flux and mixed layer heat budget within the Atlantic cold tongue. Climate Dyn., 43, 31793199, https://doi.org/10.1007/s00382-014-2339-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jouanno, J., F. Marin, Y. du Penhoat, J. Sheinbaum, and J. M. Molines, 2011: Seasonal heat balance in the upper 100 m of the equatorial Atlantic Ocean. J. Geophys. Res., 116, C09003, https://doi.org/10.1029/2010JC006912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawai, Y., H. Kawamura, S. Takahashi, K. Hosoda, H. Murakami, K. Misako, and L. Guan, 2006: Satellite-based high-resolution global optimum interpolation sea surface temperature data. J. Geophys. Res., 111, C06016, https://doi.org/10.1029/2005JC003313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671781, https://doi.org/10.1175/BAMS-88-11-1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2007: Low-frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: The weakening of the 1980s and 1990s. J. Climate, 20, 42554266, https://doi.org/10.1175/JCLI4254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lake, B. J., S. M. Noor, H. P. Freitag, and M. J. McPhaden, 2003: Calibration procedures and instrumental accuracy estimates of ATLAS air temperature and relative humidity measurements. NOAA Tech. Memo. OAR PMEL-123, 23 pp.

  • Lefèvre, N., D. Veleda, M. Araujo, and G. Caniaux, 2016: Variability and trends of carbon parameters at a time series in the eastern tropical Atlantic. Tellus, 68B, 30 305, https://doi.org/10.3402/tellusb.v68.30305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and et al. , 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp.

  • Lumpkin, R., and S. Garzoli, 2011: Interannual to decadal changes in the western South Atlantic’s surface circulation. J. Geophys. Res., 116, C01014, https://doi.org/10.1029/2010JC006285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1982: Variability in the central equatorial Indian Ocean. Part II: Oceanic heat and turbulent energy balance. J. Mar. Res., 40, 403419.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. P., and J. M. Wallace, 1992: The annual cycle in equatorial convection and sea surface temperature. J. Climate, 5, 11401156, https://doi.org/10.1175/1520-0442(1992)005<1140:TACIEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisan, J. R., and P. P. Niiler, 1998: The seasonal heat budget of the North Pacific: Net heat flux and heat storage rates (1950–1990). J. Phys. Oceanogr., 28, 401421, https://doi.org/10.1175/1520-0485(1998)028<0401:TSHBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morel, A., and D. Antoine, 1994: Heating rate within the upper ocean in relation to its biooptical state. J. Phys. Oceanogr., 24, 16521665, https://doi.org/10.1175/1520-0485(1994)024<1652:HRWTUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., J. D. Nash, and W. D. Smyth, 2011: Narrowband oscillations in the upper-equatorial ocean. Part I: Interpretation as shear instabilities. J. Phys. Oceanogr., 41, 397410, https://doi.org/10.1175/2010JPO4450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., A. Perlin, J. D. Nash, and M. J. McPhaden, 2013: Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature, 500, 6467, https://doi.org/10.1038/nature12363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modelling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon, 143–172.

  • Nobre, C., and J. Shukla, 1996: Variation of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479, https://doi.org/10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobre, P., R. A. De Almeida, M. Malagutti, and E. Giarolla, 2012: Coupled ocean–atmosphere variations over the South Atlantic Ocean. J. Climate, 25, 63496358, https://doi.org/10.1175/JCLI-D-11-00444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16, 13371351, https://doi.org/10.1175/1520-0442-16.9.1337.

  • Okumura, Y., and S.-P. Xie, 2004: Interaction of the Atlantic equatorial cold tongue and the African monsoon. J. Climate, 17, 35893602, https://doi.org/10.1175/1520-0442(2004)017<3589:IOTAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y., and S.-P. Xie, 2006: Some overlooked features of tropical Atlantic climate leading to a new Niño-like phenomenon. J. Climate, 19, 58595874, https://doi.org/10.1175/JCLI3928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parard, G., J. Boutin, Y. Cuypers, P. Bouruet-Aubertot, and G. Caniaux, 2014: On the physical and biogeochemical processes driving the high frequency variability of CO2 fugacity at 6°S, 10°W: Potential role of the internal waves. J. Geophys. Res. Oceans, 119, 83578374, https://doi.org/10.1002/2014JC009965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, R. E., 1972: Albedo of the sea surface. J. Atmos. Sci., 29, 959970, https://doi.org/10.1175/1520-0469(1972)029<0959:AOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peter, A. C., M. Le Henaff, Y. Du Penhoat, C. E. Menkes, F. Marin, J. Vialard, G. Caniaux, and A. Lazar, 2006: A model study of the seasonal mixed layer heat budget in the equatorial Atlantic. J. Geophys. Res., 111, C06014, doi:10.1029/2005JC003157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, H. T., S. Sarkar, and K. B. Winters, 2013: Large-eddy simulation of deep-cycle turbulence in an Equatorial Undercurrent model. J. Phys. Oceanogr., 43, 24902502, https://doi.org/10.1175/JPO-D-13-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polo, I., B. Rodríguez-Fonseca, T. Losada, and J. Garcia-Serrano, 2008: Tropical Atlantic variability modes (1979–2002). Part I: Time-evolving SST modes related to West African rainfall. J. Climate, 21, 64576475, https://doi.org/10.1175/2008JCLI2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praveen Kumar, B., J. Vialard, M. Lengaigne, V. S. N. Murty, and M. J. McPhaden, 2012: TropFlux: Air-sea fluxes for the global tropical oceans—Description and evaluation. Climate Dyn., 38, 15211543, https://doi.org/10.1007/s00382-011-1115-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., Y. Quilfen, B. Chapron, S. Fournier, V. Kudryavtsev, and R. Sabia, 2014: Multisensor observations of the Amazon-Orinoco river plume interactions with hurricanes. J. Geophys. Res. Oceans, 119, 82718295, https://doi.org/10.1002/2014JC010107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., and S.-P. Xie, 2008: On the origin of equatorial Atlantic biases in coupled general circulation models. Climate Dyn., 31, 587598, https://doi.org/10.1007/s00382-008-0364-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., I. Polo, J. García-Serrano, T. Losada, E. Mohino, C. R. Mechoso, and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, https://doi.org/10.1029/2009GL040048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouault, M., J. Servain, C. J. C. Reason, B. Bourlès, M. J. Rouault, and N. Fauchereau, 2009: Extension of PIRATA in the tropical Southeast Atlantic: An initial one-year experiment. Afr. J. Mar. Sci., 31, 6371, https://doi.org/10.2989/AJMS.2009.31.1.5.776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rugg, A., G. R. Foltz, and R. C. Perez, 2016: Role of mixed layer dynamics in tropical North Atlantic interannual sea surface temperature variability. J. Climate, 29, 80838101, https://doi.org/10.1175/JCLI-D-15-0867.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., and M. J. McPhaden, 2003: Multiple time- and space-scale comparisons of ATLAS buoy rain gauge measurements with TRMM satellite precipitation measurements. J. Appl. Meteor., 42, 10451059, https://doi.org/10.1175/1520-0450(2003)042<1045:MTASCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Servain, J., and et al. , 1998: A Pilot Research Moored Array in the Tropical Atlantic (PIRATA). Bull. Amer. Meteor. Soc., 79, 20192031, https://doi.org/10.1175/1520-0477(1998)079<2019:APRMAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, L. Li, and S. A. Thorpe, 2013: Diurnal shear instability, the descent of the surface shear layer, and the deep cycle of equatorial turbulence. J. Phys. Oceanogr., 43, 24322455, https://doi.org/10.1175/JPO-D-13-089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, J. W., and P. P. Niiler, 1983: Upper ocean heat budget during the Hawaii-to-Tahiti Shuttle Experiment. J. Phys. Oceanogr., 13, 18941907, https://doi.org/10.1175/1520-0485(1983)013<1894:UOHBDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sweeney, C., A. Gnanadesikan, S. M. Griffies, M. J. Harrison, A. J. Rosati, and B. L. Samuels, 2005: Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35, 11031119, https://doi.org/10.1175/JPO2740.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wade, M., G. Caniaux, Y. DuPenhoat, M. Dengler, H. Giordani, and R. Hummels, 2011: A one-dimensional modeling study of the diurnal cycle in the equatorial Atlantic at the PIRATA buoys during the EGEE-3 campaign. Ocean Dyn., 61, 120, https://doi.org/10.1007/s10236-010-0337-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and M. J. McPhaden, 2015: Dynamics of the surface layer diurnal cycle in the equatorial Atlantic Ocean (0°, 23°W). J. Geophys. Res. Oceans, 120, 563581, https://doi.org/10.1002/2014JC010504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodruff, S., and et al. , 2011: ICOADS Release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, https://doi.org/10.1002/joc.2103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., and N. Zeng, 2010: An Atlantic influence on Amazon rainfall. Climate Dyn., 34, 249264, https://doi.org/10.1007/s00382-009-0551-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2006: Role of net surface heat flux in seasonal variations of sea surface temperature in the tropical Atlantic Ocean. J. Climate, 19, 61536169, https://doi.org/10.1175/JCLI3970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6, 15671586, https://doi.org/10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and et al. , 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 114 34
PDF Downloads 47 47 8

An Enhanced PIRATA Dataset for Tropical Atlantic Ocean–Atmosphere Research

View More View Less
  • 1 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
© Get Permissions
Restricted access

Abstract

The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) provides measurements of the upper ocean and near-surface atmosphere at 18 locations. Time series from many moorings are nearly 20 years in length. However, instrumental biases, data dropouts, and the coarse vertical resolutions of the oceanic measurements complicate their use for research. Here an enhanced PIRATA dataset (ePIRATA) is presented for the 17 PIRATA moorings with record lengths of at least seven years. Data in ePIRATA are corrected for instrumental biases, temporal gaps are filled using supplementary datasets, and the subsurface temperature and salinity time series are mapped to a uniform 5-m vertical grid. All original PIRATA data that pass quality control and that do not require bias correction are retained without modification, and detailed error estimates are provided. The terms in the mixed-layer heat and temperature budgets are calculated and included, with error bars. As an example of ePIRATA’s application, the vertical exchange of heat at the base of the mixed layer (Qh) is calculated at each PIRATA location as the difference between the heat storage rate and the sum of the net surface heat flux and horizontal advection. Off-equatorial locations are found to have annual mean cooling rates of 20–60 W m−2, while cooling at equatorial locations reaches 85–110 W m−2 between 10° and 35°W and decreases to 40 W m−2 at 0°. At most off-equatorial locations, the strongest seasonal cooling from Qh occurs when winds are weak. Possible explanations are discussed, including the importance of seasonal modulations of mixed-layer depth and the diurnal cycle.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author:gregory.foltz@noaa.gov

Abstract

The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) provides measurements of the upper ocean and near-surface atmosphere at 18 locations. Time series from many moorings are nearly 20 years in length. However, instrumental biases, data dropouts, and the coarse vertical resolutions of the oceanic measurements complicate their use for research. Here an enhanced PIRATA dataset (ePIRATA) is presented for the 17 PIRATA moorings with record lengths of at least seven years. Data in ePIRATA are corrected for instrumental biases, temporal gaps are filled using supplementary datasets, and the subsurface temperature and salinity time series are mapped to a uniform 5-m vertical grid. All original PIRATA data that pass quality control and that do not require bias correction are retained without modification, and detailed error estimates are provided. The terms in the mixed-layer heat and temperature budgets are calculated and included, with error bars. As an example of ePIRATA’s application, the vertical exchange of heat at the base of the mixed layer (Qh) is calculated at each PIRATA location as the difference between the heat storage rate and the sum of the net surface heat flux and horizontal advection. Off-equatorial locations are found to have annual mean cooling rates of 20–60 W m−2, while cooling at equatorial locations reaches 85–110 W m−2 between 10° and 35°W and decreases to 40 W m−2 at 0°. At most off-equatorial locations, the strongest seasonal cooling from Qh occurs when winds are weak. Possible explanations are discussed, including the importance of seasonal modulations of mixed-layer depth and the diurnal cycle.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author:gregory.foltz@noaa.gov
Save