• Bell, G. D., and M. Chelliah, 2006: Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19, 590612, https://doi.org/10.1175/JCLI3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and et al. , 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81 (6), S1S50, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bove, M. C., J. B. Elsner, C. W. Landsea, X. Niu, and J. J. O’Brien, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 24772482, https://doi.org/10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., G. J. Holland, and E. Towler, 2012: Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. J. Climate, 25, 86118626, https://doi.org/10.1175/JCLI-D-11-00619.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, https://doi.org/10.1175/JCLI3457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074, https://doi.org/10.1175/2009JAS3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. Ting, and Y. Kushnir, 2013: Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Climate Dyn., 40, 15151529, https://doi.org/10.1007/s00382-012-1536-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., S. F. Chen, G. H. Chen, W. Chen, and R. G. Wu, 2015: On the weakened relationship between spring Arctic Oscillation and following summer tropical cyclone frequency over the western North Pacific: A comparison between 1968–1986 and 1989–2007. Adv. Atmos. Sci., 32, 13191328, https://doi.org/10.1007/s00376-015-4256-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 2004: ENSO and tropical cyclone activity. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 297–332.

  • Chu, P.-S., and X. Zhao, 2004: Bayesian change-point analysis of tropical cyclone activity: The central North Pacific case. J. Climate, 17, 48934901, https://doi.org/10.1175/JCLI-3248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762087, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., D. M. Smith, B. B. B. Booth, L. Hermanson, and R. Eade, 2013: Anthropogenic aerosol forcing of Atlantic tropical storms. Nat. Geosci., 6, 534539, https://doi.org/10.1038/ngeo1854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., 2003: Tracking hurricanes. Bull. Amer. Meteor. Soc., 84, 353356, https://doi.org/10.1175/BAMS-84-3-353.

  • Elsner, J. B., 2006: Evidence in support of the climate change–Atlantic hurricane hypothesis. Geophys. Res. Lett., 33, L16705, https://doi.org/10.1029/2006GL026869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., X. Niu, and T. H. Jagger, 2004: Detecting shifts in hurricane rates using a Markov chain Monte Carlo approach. J. Climate, 17, 26522666, https://doi.org/10.1175/1520-0442(2004)017<2652:DSIHRU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152, https://doi.org/10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 54975509, https://doi.org/10.1175/2007JCLI1571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2011: Global warming effects on U.S. hurricane damage. Wea. Climate Soc., 3, 261268, https://doi.org/10.1175/WCAS-D-11-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, https://doi.org/10.1073/pnas.1301293110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2, https://ams.confex.com/ams/pdfpapers/75463.pdf.

  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, https://doi.org/10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., 2012: Atlantic hurricane activity following two major volcanic eruptions. J. Geophys. Res., 117, D06101, https://doi.org/10.1029/2011JD016716.

    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., 1921: On the “probable error” of a coefficient of correlation deduced from a small sample. Metron, 1, 332.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, https://doi.org/10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Gray, W. M., J. D. Sheaffer, and C. W. Landsea, 1997: Climate trends associated with multi-decadal variability of Atlantic hurricane activity. Hurricanes: Climate and Socioeconomic Impacts, H. F. Diaz and R. S. Pulwarty, Eds., Springer, 15–53.

    • Crossref
    • Export Citation
  • Harada, Y., and et al. , 2016: The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269302, https://doi.org/10.2151/jmsj.2016-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, https://doi.org/10.1175/2011JCLI4097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and P. J. Webster, 2007: Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Philos. Trans. Roy. Soc. London, 365A, 26952716, https://doi.org/10.1098/rsta.2007.2083.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., P.-S. Chu, H. Murakami, and X. Zhao, 2014: An abrupt decrease in the late-season typhoon activity over the western North Pacific. J. Climate, 27, 42964312, https://doi.org/10.1175/JCLI-D-13-00417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2016: Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). J. Climate, 29, 31193142, https://doi.org/10.1175/JCLI-D-15-0430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., M. Zhao, and D. E. Waliser, 2012: Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Climate, 25, 65246538, https://doi.org/10.1175/JCLI-D-11-00531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and et al. , 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, https://doi.org/10.1126/science.aaa5632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Charles Griffin, 202 pp.

  • Kim, H.-M., and P. J. Webster, 2010: Extended-range seasonal hurricane forecasts for the North Atlantic with a hybrid dynamical-statistical model. Geophys. Res. Lett., 37, L21705, https://doi.org/10.1029/2010GL044792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2006: Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys. Res. Lett., 33, L10805, https://doi.org/10.1029/2006GL025881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2010: On the Madden–Julian oscillation–Atlantic hurricane relationship. J. Climate, 23, 282293, https://doi.org/10.1175/2009JCLI2978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2014: The Madden–Julian oscillation’s impacts on worldwide tropical cyclone activity. J. Climate, 27, 23172330, https://doi.org/10.1175/JCLI-D-13-00483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 15491565, https://doi.org/10.1175/BAMS-88-10-1549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, https://doi.org/10.1038/ngeo202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671781, https://doi.org/10.1175/BAMS-88-11-1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, https://doi.org/10.1175/2010JCLI3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., B. A. Harper, K. Horau, and J. A. Knaff, 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452454, https://doi.org/10.1126/science.1128448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., G. A. Vecchi, L. Bengtsson, and T. R. Knutson, 2010: Impact of duration thresholds on Atlantic tropical cyclone counts. J. Climate, 23, 25082519, https://doi.org/10.1175/2009JCLI3034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., L. Stefanova, D.-W. Shin, and S. Cocke, 2010: Seasonal Atlantic tropical cyclone hindcasting/forecasting using two sea surface temperature datasets. Geophys. Res. Lett., 37, L02804, https://doi.org/10.1029/2009GL041459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., N. Keenlyside, and J. Bader, 2007: Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett., 34, L01710, https://doi.org/10.1029/2006GL027969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, and Y. Deng, 2015: Impact of the interdecadal Pacific oscillation on tropical cyclone activity in the North Atlantic and eastern North Pacific. Sci. Rep., 5, 12358, https://doi.org/10.1038/srep12358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 120, https://doi.org/10.3402/tellusa.v12i1.9351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and J. Shaman, 2008: Intraseasonal variability of the West African monsoon and Atlantic ITCZ. J. Climate, 21, 28982918, https://doi.org/10.1175/2007JCLI1999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18, 5060, https://doi.org/10.1214/aoms/1177730491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233241, https://doi.org/10.1029/2006EO240001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and R. Zehr, 1981: Observational analyses of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151, https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendelsohn, R., K. Emanuel, S. Chonabayashi, and L. Bakkensen, 2012: The impact of climate change on global tropical cyclone damage. Nat. Climate Change, 2, 205209, https://doi.org/10.1038/nclimate1357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., M. Lengaigne, P. Marchesiello, N. C. Jourdain, E. M. Vincent, J. Lefèvre, F. Chauvin, and J.-F. Royer, 2012: Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Climate Dyn., 38, 301321, https://doi.org/10.1007/s00382-011-1126-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon. Wea. Rev., 128, 40974107, https://doi.org/10.1175/1520-0493(2000)129<4097:TABIOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., T. Li, and P.-C. Hsu, 2014: Contributing factors to the recent high level of accumulated cyclone energy (ACE) and power dissipation index (PDI) in the North Atlantic. J. Climate, 27, 30233034, https://doi.org/10.1175/JCLI-D-13-00394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107, https://doi.org/10.1002/qj.170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., and C. W. Landsea, 1998: Normalized hurricane damages in the United States: 1925–95. Wea. Forecasting, 13, 621631, https://doi.org/10.1175/1520-0434(1998)013<0621:NHDITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, M. A., and A. R. Harris, 1997: Statistical evidence links exceptional 1995 Atlantic hurricane season to record sea warming. Geophys. Res. Lett., 24, 12551258, https://doi.org/10.1029/97GL01164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schade, L. R., 2000: Tropical cyclone intensity and sea surface temperature. J. Atmos. Sci., 57, 31223130, https://doi.org/10.1175/1520-0469(2000)057<3122:TCIASS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, W., R. E. Tuleya, and I. A. Ginis, 2000: A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Climate, 13, 109121, https://doi.org/10.1175/1520-0442(2000)013<0109:ASSOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., S. M. Uppala, and D. P. Dee, 2007: Update on ERA Interim. ECMWF Newsletter, No. 111, ECMWF, Reading, United Kingdom, 5.

  • Smirnov, D., and D. J. Vimont, 2011: Variability of the Atlantic meridional mode during the Atlantic hurricane season. J. Climate, 24, 14091424, https://doi.org/10.1175/2010JCLI3549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., I. M. Held, and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15, 27022706, https://doi.org/10.1175/1520-0442(2002)015<2702:TESITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. J. Camargo, T. M. Hall, C.-Y. Lee, M. K. Tippett, and A. A. Wing, 2016: Human influence on tropical cyclone intensity. Science, 353, 242246, https://doi.org/10.1126/science.aaf6574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., S. J. Camargo, C. Li, and Y. Kushnir, 2015: Natural and forced North Atlantic hurricane potential intensity change in CMIP5 models. J. Climate, 28, 39263942, https://doi.org/10.1175/JCLI-D-14-00520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, https://doi.org/10.1175/2010JCLI3811.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, https://doi.org/10.1002/2013EF000165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, J.-Y., C. Chou, and P.-S. Chu, 2009: The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change. J. Climate, 22, 36173628, https://doi.org/10.1175/2009JCLI2411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, https://doi.org/10.1038/nature06423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., M. Zhao, H. Wang, G. Villarini, A. Rosati, A. Kumar, I. M. Held, and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082, https://doi.org/10.1175/2010MWR3499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., T. L. Olander, and S. Wanzong, 1998: The impact of multispectral GOES-8 wind information on the Atlantic tropical cyclone track forecasts in 1995. Part I: Dataset methodology, description, and case analysis. Mon. Wea. Rev., 126, 12021218, https://doi.org/10.1175/1520-0493(1998)126<1202:TIOMGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and et al. , 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210, https://doi.org/10.1175/BAMS-87-9-1195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergados, P., A. J. Mannucci, C. O. Ao, J. H. Jiang, and H. Su, 2015: On the comparisons of tropical relative humidity in the lower and middle troposphere among COSMIC radio occultations and MERRA and ECMWF data set. Atmos. Meas. Tech., 8, 17891797, https://doi.org/10.5194/amt-8-1789-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2012a: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat. Climate Change, 2, 604607, https://doi.org/10.1038/nclimate1530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2012b: North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE): Statistical modeling and sensitivity to sea surface temperature changes. J. Climate, 25, 625637, https://doi.org/10.1175/JCLI-D-11-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate, 26, 32313240, https://doi.org/10.1175/JCLI-D-12-00441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, T. R. Knutson, and J. A. Smith, 2011: Is the recorded increase in short-duration North Atlantic tropical storms spurious? J. Geophys. Res., 116, D10114, https://doi.org/10.1029/2010JD015493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and et al. , 2015: Hurricane and climate: The U.S. CLIVAR Working Group on hurricanes. Bull. Amer. Meteor. Soc., 96, 9971017, https://doi.org/10.1175/BAMS-D-13-00242.1; Corrigendum, 96, 1140, https://doi.org/10.1175/BAMS-D-15-00232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S. Dong, A. T. Evan, G. R. Foltz, and S.-K. Lee, 2012: Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J. Climate, 25, 54045415, https://doi.org/10.1175/JCLI-D-11-00413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J.-K. E. Schemm, A. Kumar, W. Wang, L. Long, M. Chelliah, G. D. Bell, and P. Peng, 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Climate, 22, 44814500, https://doi.org/10.1175/2009JCLI2753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., and L. Wu, 2013: Climate changes of Atlantic tropical cyclone formation derived from twentieth-century reanalysis. J. Climate, 26, 89959005, https://doi.org/10.1175/JCLI-D-13-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waters, J. J., J. L. Evans, and C. E. Forest, 2012: Large-scale diagnostics of tropical cyclogenesis potential using environment variability metrics and logistic regression models. J. Climate, 25, 60926107, https://doi.org/10.1175/JCLI-D-11-00359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, https://doi.org/10.1126/science.1116448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biom. Bull., 1, 8083, https://doi.org/10.2307/3001968.

  • Wu, L., 2007: Impact of Saharan air layer on hurricane peak intensity. Geophys. Res. Lett., 34, L09802, https://doi.org/10.1029/2007GL029564.

  • Wu, L., and H. Zhao, 2012: Dynamically derived tropical cyclone intensity changes over the western North Pacific. J. Climate, 25, 8998, https://doi.org/10.1175/2011JCLI4139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., B. Wang, and S. A. Braun, 2008: Implications of tropical cyclone power dissipation index. Int. J. Climatol., 28, 727731, https://doi.org/10.1002/joc.1573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, https://doi.org/10.1007/s00382-012-1427-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, L., T. Yan, L. J. Pietrafesa, J. M. Morrison, and T. Karl, 2005: Climatology and interannual variability of North Atlantic hurricane tracks. J. Climate, 18, 53705381, https://doi.org/10.1175/JCLI3560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Xu, W. S. Kessler, and M. Nonaka, 2005: Air–sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. J. Climate, 18, 520, https://doi.org/10.1175/JCLI-3249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, https://doi.org/10.1029/2012GL052483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H. Paek, E. S. Saltzman, and T. Lee, 2015a: The early 1990s change in ENSO–PSA–SAM relationships and its impact on Southern Hemisphere climate. J. Climate, 28, 93939408, https://doi.org/10.1175/JCLI-D-15-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., P.-K. Kao, H. Paek, H.-H. Hsu, C.-W. Hung, M.-M. Lu, and S.-I. An, 2015b: Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J. Climate, 28, 651662, https://doi.org/10.1175/JCLI-D-14-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, https://doi.org/10.1029/2006GL026267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and et al. , 2013: Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci., 70, 11351144, https://doi.org/10.1175/JAS-D-12-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and G. B. Raga, 2015: On the distinct interannual variability of tropical cyclone activity over the eastern North Pacific. Atmósfera, 28, 161178, https://doi.org/10.20937/ATM.2015.28.03.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific. Climate Dyn., 47, 315328, https://doi.org/10.1007/s00382-015-2837-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., L. Wu, and W. Zhou, 2011: Interannual changes of tropical cyclone intensity in the western North Pacific. J. Meteor. Soc. Japan, 89, 243253, https://doi.org/10.2151/jmsj.2011-305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., P.-S. Chu, P.-C. Hsu, and H. Murakami, 2014: Exploratory analysis of extremely low tropical cyclone activity during the late-season of 2010 and 1998 over the western North Pacific and the South China Sea. J. Adv. Model. Earth Syst., 6, 11411153, https://doi.org/10.1002/2014MS000381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Jiang, and L. Wu, 2015a: Modulation of northwest Pacific tropical cyclone genesis by the intraseasonal variability. J. Meteor. Soc. Japan, 93, 8197, https://doi.org/10.2151/jmsj.2015-006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., R. Yoshida, and G. B. Raga, 2015b: Impact of the Madden–Julian oscillation on western North Pacific tropical cyclogenesis associated with large-scale patterns. J. Appl. Meteor. Climatol., 54, 14131429, https://doi.org/10.1175/JAMC-D-14-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2012: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J. Climate, 25, 29953009, https://doi.org/10.1175/JCLI-D-11-00313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X., and P.-S. Chu, 2010: Bayesian changepoint analysis for extreme events (typhoons, heavy rainfall, and heat waves): An RJMCMC approach. J. Climate, 23, 10341046, https://doi.org/10.1175/2009JCLI2597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and X. Cui, 2014: Interdecadal change of the linkage between the North Atlantic Oscillation and the tropical cyclone frequency over the western North Pacific. China Earth Sci., 57, 21482155, https://doi.org/10.1007/s11430-014-4862-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Y., J.-Y. Yu, T. Lee, M.-M. Lu, and S. T. Kim, 2014: CMIP5 model simulations of the impacts of the two types of El Niño on the U.S. winter temperature. J. Geophys. Res. Atmos., 119, 30763092, https://doi.org/10.1002/2013JD021064.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 108 108 9
PDF Downloads 65 65 7

Potential Large-Scale Forcing Mechanisms Driving Enhanced North Atlantic Tropical Cyclone Activity since the Mid-1990s

View More View Less
  • 1 Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, and Pacific Typhoon Research Center, and Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
  • | 4 Department of Geosciences, University of Missouri–Kansas City, Kansas City, Missouri
© Get Permissions
Restricted access

Abstract

A significant increase of tropical cyclone (TC) frequency is observed over the North Atlantic (NATL) basin during the recent decades (1995–2014). In this study, the changes in large-scale controls of the NATL TC activity are compared between two periods, one before and one since 1995, when a regime change is observed. The results herein suggest that the significantly enhanced NATL TC frequency is related mainly to the combined effect of changes in the magnitudes of large-scale atmospheric and oceanic factors and their association with TC frequency. Interdecadal changes in the role of vertical wind shear and local sea surface temperatures (SSTs) over the NATL appear to be two important contributors to the recent increase of NATL TC frequency. Low-level vorticity plays a relatively weak role in the recent increase of TC frequency. These changes in the role of large-scale factors largely depend on interdecadal changes of tropical SST anomalies (SSTAs). Enhanced low-level westerlies to the east of the positive SSTAs have been observed over the tropical Atlantic since 1995, with a pattern nearly opposite to that seen before 1995. Moreover, the large-scale contributors to the NATL TC frequency increase since 1995 are likely related to both local and remote SSTAs. Quantification of the impacts of local and remote SSTAs on the increase of TC frequency over the NATL basin and the physical mechanisms require numerical simulations and further observational analyses.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Haikun Zhao, zhk2004y@gmail.com

Abstract

A significant increase of tropical cyclone (TC) frequency is observed over the North Atlantic (NATL) basin during the recent decades (1995–2014). In this study, the changes in large-scale controls of the NATL TC activity are compared between two periods, one before and one since 1995, when a regime change is observed. The results herein suggest that the significantly enhanced NATL TC frequency is related mainly to the combined effect of changes in the magnitudes of large-scale atmospheric and oceanic factors and their association with TC frequency. Interdecadal changes in the role of vertical wind shear and local sea surface temperatures (SSTs) over the NATL appear to be two important contributors to the recent increase of NATL TC frequency. Low-level vorticity plays a relatively weak role in the recent increase of TC frequency. These changes in the role of large-scale factors largely depend on interdecadal changes of tropical SST anomalies (SSTAs). Enhanced low-level westerlies to the east of the positive SSTAs have been observed over the tropical Atlantic since 1995, with a pattern nearly opposite to that seen before 1995. Moreover, the large-scale contributors to the NATL TC frequency increase since 1995 are likely related to both local and remote SSTAs. Quantification of the impacts of local and remote SSTAs on the increase of TC frequency over the NATL basin and the physical mechanisms require numerical simulations and further observational analyses.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Haikun Zhao, zhk2004y@gmail.com
Save