• Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and R. B. Ingvaldsen, 2012: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J. Climate, 25, 47364743, https://doi.org/10.1175/JCLI-D-11-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104, 15 66915 677, https://doi.org/10.1029/1999JC900100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., K. Armou, C. M. Bitz, and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, https://doi.org/10.1175/2010JCLI3775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., R. I. Cullather, W. Wang, J. Zhang, and C. M. Bitz, 2015: Model forecast skill and sensitivity to initial conditions in the seasonal sea ice outlook: Summer sea ice forecast skill in models. Geophys. Res. Lett., 42, 80428048, https://doi.org/10.1002/2015GL065860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., R. Msadek, M. Winton, G. Vecchi, R. Gudgel, A. Rosati, and X. Yang, 2017: Summer enhancement of Arctic sea ice volume anomalies in the September-ice zone. J. Climate, 30, 23412362, https://doi.org/10.1175/JCLI-D-16-0470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., and D. Salas-Mélia, 2012: The role of sea ice thickness distribution in the Arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. J. Climate, 25, 30253038, https://doi.org/10.1175/JCLI-D-11-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., Y.-K. Lim, L. N. Boisvert, L. Brucker, J. N. Lee, and S. M. J. Nowicki, 2016: Analysis of the warmest Arctic winter, 2015–2016. Geophys. Res. Lett., 43, 10 80810 816, https://doi.org/10.1002/2016GL071228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., E. Hawkins, and S. Tietsche, 2014: Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys. Res. Lett., 41, 75667575, https://doi.org/10.1002/2014GL061694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, G. A. Vecchi, X. Yang, L. Zhang, and R. Zhang, 2016: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci., 9, 509512, https://doi.org/10.1038/ngeo2738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döscher, R., T. Vihma, and E. Maksimovich, 2014: Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: A review. Atmos. Chem. Phys., 14, 13 57113 600, https://doi.org/10.5194/acp-14-13571-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., N. Untersteiner, and J. S. Wettlaufer, 2007: On the reliability of simulated Arctic sea ice in global climate models. Geophys. Res. Lett., 34, L10501, https://doi.org/10.1029/2007GL029914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, S. Drijfhout, M. Tjernström, and S. Mårtensson, 2011: Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Climate Dyn., 36, 21032112, https://doi.org/10.1007/s00382-010-0809-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and J. C. Stroeve, 2011: Changing seasonal sea ice predictor relationships in a changing Arctic climate. Geophys. Res. Lett., 38, L18501, https://doi.org/10.1029/2011GL049303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, and B. Tremblay, 2006: Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett., 33, L23503, https://doi.org/10.1029/2006GL028024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Climate Change, 3, 744748, https://doi.org/10.1038/nclimate1884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, https://doi.org/10.1029/2008GL033451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., and et al. , 2017: Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Sci. Rep., 7, 40051, https://doi.org/10.1038/srep40051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36, L15501, https://doi.org/10.1029/2009GL039035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laxon, S. W., and et al. , 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732737, https://doi.org/10.1002/grl.50193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppäranta, M., 2005: The Drift of Sea Ice. Springer-Verlag, 266 pp., https://doi.org/10.1007/b138386.

    • Crossref
    • Export Citation
  • Lindsay, R., and J. Zhang, 2006: Assimilation of ice concentration in an ice-ocean model. J. Atmos. Oceanic Technol., 23, 742749, https://doi.org/10.1175/JTECH1871.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and J. R. Key, 2014: Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environ. Res. Lett., 9, 044002, https://doi.org/10.1088/1748-9326/9/4/044002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., 2016: NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace, Tech. Rep. 27, ISSN 1288-1619, 396 pp., https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf.

  • Miles, M. W., D. V. Divine, T. Furevik, E. Jansen, M. Moros, and A. E. J. Ogilvie, 2014: A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophys. Res. Lett., 41, 463469, https://doi.org/10.1002/2013GL058084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogi, M., S. Rysgaard, and D. G. Barber, 2016: Importance of combined winter and summer Arctic Oscillation (AO) on September sea ice extent. Environ. Res. Lett., 11, 034019, https://doi.org/10.1088/1748-9326/11/3/034019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., and A. L. Stewart, 2016: An analytical model for wind-driven Arctic summer sea ice drift. Cryosphere, 10, 227244, https://doi.org/10.5194/tc-10-227-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., S. Lee, Y. Kosaka, S.-W. Son, and S.-W. Kim, 2015: The impact of Arctic winter infrared radiation on early summer sea ice. J. Climate, 28, 62816296, https://doi.org/10.1175/JCLI-D-14-00773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rampal, P., J. Weiss, C. Dubois, and J. Ǧ. M. Campin, 2011: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline. J. Geophys. Res., 116, C00D07, https://doi.org/10.1029/2011JC007110.

    • Search Google Scholar
    • Export Citation
  • Renner, A. H. H., S. Gerland, C. Haas, G. Spreen, J. F. Beckers, E. Hansen, M. Nicolaus, and H. Goodwin, 2014: Evidence of Arctic sea ice thinning from direct observations. Geophys. Res. Lett., 41, 50295036, https://doi.org/10.1002/2014GL060369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24, 36243248, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663, https://doi.org/10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, and K. Keay, 2011: Dramatic inter-annual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res., 116, D15105, https://doi.org/10.1029/2011JD015847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and et al. , 2003: A record minimum arctic sea-ice extent and area in 2002. Geophys. Res. Lett., 30, 1110, https://doi.org/10.1029/2002GL016406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., M. H. Halvorsen, J. C. Stroeve, R. Zhang, and K. Kloster, 2017: Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere, 11, 6579, https://doi.org/10.5194/tc-11-65-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., and et al. , 2010: The Parallel Ocean Program (POP) reference manual: Ocean Component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). Tech. Rep. LAUR-10-01853, Los Alamos National Laboratory, Los Alamos, NM, 141 pp., http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf.

  • Stroeve, J. C., J. Maslanik, M. C. Serreze, I. Rigor, W. Meier, and C. Fowler, 2011: Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophys. Res. Lett., 38, L02502, https://doi.org/10.1029/2010GL045662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., 1992: A toy model linking atmospheric thermal radiation and sea ice growth. J. Geophys. Res., 97, 94019410, https://doi.org/10.1029/92JC00695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. J. Geophys. Res., 87, 58455852, https://doi.org/10.1029/JC087iC08p05845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tietsche, S., M. A. Balmaseda, H. Zuo, and K. Mogensen, 2015: Arctic sea ice in the global eddy-permitting ocean reanalysis ORAP5. Climate Dyn., 49, 775789, https://doi.org/10.1007/s00382-015-2673-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilling, R. L., A. Ridout, A. Shepherd, and D. J. Wingham, 2015: Increased Arctic sea ice volume after anomalously low melting in 2013. Nat. Geosci., 8, 643646, https://doi.org/10.1038/ngeo2489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Zhang, E. Watanabe, M. Ikeda, K. Mizobata, J. E. Walsh, X. Bai, and B. Wu, 2009: Is the dipole anomaly a major drier to record lows in Arctic summer sea ice extent? Geophys. Res. Lett., 36, L05706, https://doi.org/10.1029/2008GL036706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weeks, W. F., and S. F. Ackley, 1986: The growth, structure, and properties of sea ice. The Geophysics of Sea Ice, N. Untersteiner, Ed., NATO ASI Series, Vol. 146, Springer, 9–164, https://doi.org/10.1007/978-1-4899-5352-0_2.

    • Crossref
    • Export Citation
  • Williams, J., B. R. Tremblay, R. Newton, and R. Allard, 2016: Dynamic preconditioning of the minimum September sea-ice extent. J. Climate, 29, 58795891, https://doi.org/10.1175/JCLI-D-15-0515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wingham, D. J., and et al. , 2006: CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. Adv. Space Res., 37, 841871, https://doi.org/10.1016/j.asr.2005.07.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, https://doi.org/10.1002/grl.50912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zib, B., X. Dong, B. Xi, and A. Kennedy, 2012: Evaluation and intercomparison of cloud fraction and radiative fluxes in recent reanalyses over the Arctic using BSRN surface observations. J. Climate, 25, 22912305, https://doi.org/10.1175/JCLI-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, and K. Mogensen, 2015: The new eddy-permitting ORAP5 ocean reanalysis: Description, evaluation and uncertainties in climate signals. Climate Dyn., 49, 791811, https://doi.org/10.1007/s00382-015-2675-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 120 14
PDF Downloads 125 125 10

Dynamic and Thermodynamic Impacts of the Winter Arctic Oscillation on Summer Sea Ice Extent

View More View Less
  • 1 Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
  • | 2 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 3 Department of Atmospheric Sciences, Pusan National University, Busan, South Korea
© Get Permissions
Restricted access

Abstract

Arctic summer sea ice extent exhibits substantial interannual variability, as is highlighted by the remarkable recovery in sea ice extent in 2013 following the record minimum in the summer of 2012. Here, the mechanism via which Arctic Oscillation (AO)-induced ice thickness changes impact summer sea ice is explored, using observations and reanalysis data. A positive AO weakens the basin-scale anticyclonic sea ice drift and decreases the winter ice thickness by 15 and 10 cm in the Eurasian and the Pacific sectors of the Arctic, respectively. Three reanalysis datasets show that the upward surface heat fluxes are reduced over wide areas of the Arctic, suppressing the ice growth during the positive AO winters. The winter dynamic and thermodynamic thinning preconditions the ice for enhanced radiative forcing via the ice–albedo feedback in late spring–summer, leading to an additional 10 cm of thinning over the Pacific sector of the Arctic. Because of these winter AO-induced dynamic and thermodynamics effects, the winter AO explains about 22% (r = −0.48) of the interannual variance of September sea ice extent from 1980 to 2015.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0067.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hyo-Seok Park, hspark@kigam.re.kr

Abstract

Arctic summer sea ice extent exhibits substantial interannual variability, as is highlighted by the remarkable recovery in sea ice extent in 2013 following the record minimum in the summer of 2012. Here, the mechanism via which Arctic Oscillation (AO)-induced ice thickness changes impact summer sea ice is explored, using observations and reanalysis data. A positive AO weakens the basin-scale anticyclonic sea ice drift and decreases the winter ice thickness by 15 and 10 cm in the Eurasian and the Pacific sectors of the Arctic, respectively. Three reanalysis datasets show that the upward surface heat fluxes are reduced over wide areas of the Arctic, suppressing the ice growth during the positive AO winters. The winter dynamic and thermodynamic thinning preconditions the ice for enhanced radiative forcing via the ice–albedo feedback in late spring–summer, leading to an additional 10 cm of thinning over the Pacific sector of the Arctic. Because of these winter AO-induced dynamic and thermodynamics effects, the winter AO explains about 22% (r = −0.48) of the interannual variance of September sea ice extent from 1980 to 2015.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0067.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hyo-Seok Park, hspark@kigam.re.kr

Supplementary Materials

    • Supplemental Materials (DOCX 1.17 MB)
Save