• Anthes, R. A., Ed., 1982: Tropical Cyclones: Their Evolution, Structure, and Effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 208 pp.

  • Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638656, https://doi.org/10.1175/MWR3087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002a: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002b: Low frequency variability of tropical cyclone potential intensity. 2. Climatology for 1982–1995. J. Geophys. Res., 107, 4621, https://doi.org/10.1029/2001JD000780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2010: Revisiting the influence of the quasi-biennial oscillation on tropical cyclone activity. J. Climate, 23, 58105825, https://doi.org/10.1175/2010JCLI3575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074, https://doi.org/10.1175/2009JAS3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 1995: Tropical cyclone activity in the western North Pacific in relation to the stratospheric quasi-biennial oscillation. Mon. Wea. Rev., 123, 25672571, https://doi.org/10.1175/1520-0493(1995)123<2567:TCAITW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and H.-C. Tsai, 2016: Opportunities and challenges in the dynamical and predictability studies of tropical cyclone events. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. P. Li et al., Eds., Special Publications of the International Union of Geodesy and Geophysics Series, Vol. 2, Cambridge University Press, 133–140.

    • Crossref
    • Export Citation
  • Elsberry, R. L., W. M. Frank, G. J. Holland, J. D. Jarrell, and R. L. Southern, 1987: A Global View of Tropical Cyclones. Office of Naval Research, 185 pp.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, https://doi.org/10.1146/annurev.earth.31.100901.141259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2, https://ams.confex.com/ams/pdfpapers/75463.pdf.

  • Feng, T., X. Y. Shen, R. H. Huang, and G. H. Chen, 2014: Influence of the interannual variation of cross-equatorial flow on tropical cyclogenesis over the western North Pacific (in Chinese). J. Trop. Meteor., 30, 1112.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and E. D. Maloney, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part II: Stochastic barotropic modeling. J. Atmos. Sci., 58, 25592570, https://doi.org/10.1175/1520-0469(2001)058<2559:TMJOBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., J.-J. Baik, J.-H. Kim, D.-Y. Gong, and C.-H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 17671776, https://doi.org/10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1987: Mature structure and structure change. A Global View of Tropical Cyclones, R. L. Elsberry et al., Eds., Office of Naval Research, 13–52.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 540 pp.

  • Huang, P., C. Chou, and R. H. Huang, 2011: Seasonal modulation of tropical intraseasonal oscillations on tropical cyclone geneses in the western North Pacific. J. Climate, 24, 63396352, https://doi.org/10.1175/2011JCLI4200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huo, L. W., P. W. Guo, S. N. Hameed, and D. C. Jin, 2015: The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis. Geophys. Res. Lett., 42, 23782384, https://doi.org/10.1002/2015GL063184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., M. Zhao, and D. E. Waliser, 2012: Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Climate, 25, 65246538, https://doi.org/10.1175/JCLI-D-11-00531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2010: Tropical cyclone structure and dynamics. Global Perspectives on Tropical Cyclones: From Science to Mitigation, J. C. L. Chan and J. D. Kepert, Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 4, World Scientific, 3–54.

    • Crossref
    • Export Citation
  • Kikuchi, K., and B. Wang, 2010: Formation of tropical cyclones in the northern Indian Ocean associated with two types of intraseasonal oscillation modes. J. Meteor. Soc. Japan, 88, 475496, https://doi.org/10.2151/jmsj.2010-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, https://doi.org/10.1007/s00382-011-1159-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780, https://doi.org/10.1126/science.1174062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., C.-H. Ho, H.-S. Kim, C.-H. Sui, and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191, https://doi.org/10.1175/2007JCLI1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671781, https://doi.org/10.1175/BAMS-88-11-1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367, https://doi.org/10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., G. X. Wu, and D. X. Hu, 2011: Ocean–Atmosphere Interaction over the Joining Area of Asia and Indian–Pacific Ocean and Its Impact on the Short-Term Climate Variation in China (in Chinese). Vol. 1, China Meteorological Press, 516 pp.

  • Li, J. P., and et al. , 2013a: Progress in air–land–sea interactions in Asia and their role in global and Asian climate change (in Chinese). Chin. J. Atmos. Sci., 37, 518538.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., C. Sun, and F.-F. Jin, 2013b: NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett., 40, 54975502, https://doi.org/10.1002/2013GL057877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., R. Swinbank, R. Grotjahn, and H. Volkert, Eds., 2016a: Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events. Special Publications of the International Union of Geodesy and Geophysics Series, Vol. 2, Cambridge University Press, 370 pp.

    • Crossref
    • Export Citation
  • Li, J. P., Q. Y. Wang, Y. J. Li, and J. W. Zhang, 2016b: Review and perspective on the climatological research of tropical cyclones in terms of energetics (in Chinese). J. Beijing Norm. Univ. Nat. Sci., 52, 705713.

    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013a: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 29042918, https://doi.org/10.1175/JCLI-D-12-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013b: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 29192930, https://doi.org/10.1175/JCLI-D-12-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X. Z., 1956: A comprehensive theory for the typhoon genesis (in Chinese). Acta Meteor. Sin., 27, 8789.

  • Li, Y., J. P. Li, and J. Feng, 2012: A teleconnection between the reduction of rainfall in southwest western Australia and north China. J. Climate, 25, 84448461, https://doi.org/10.1175/JCLI-D-11-00613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y. J., J. P. Li, and J. Feng, 2013: Boreal summer convection oscillation over the Indo-western Pacific and its relationship with the East Asian summer monsoon. Atmos. Sci. Lett., 14, 6671, https://doi.org/10.1002/asl2.418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 44644476, https://doi.org/10.1175/2008JCLI2207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R. Y., 2001: Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J. Meteor. Soc. Japan, 79, 771783, https://doi.org/10.2151/jmsj.79.771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1986: Seasonal variations of the 40–50 day oscillation in the tropics. J. Atmos. Sci., 43, 31383158, https://doi.org/10.1175/1520-0469(1986)043<3138:SVOTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000a: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000b: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 20022004, https://doi.org/10.1126/science.287.5460.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pyper, B. J., and R. M. Peterman, 1998: Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci., 55, 21272140, https://doi.org/10.1139/f98-104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and S. J. Camargo, 2005: Influence of western North Pacific tropical cyclones on their large-scale environment. J. Atmos. Sci., 62, 33963407, https://doi.org/10.1175/JAS3539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., J. P. Li, J. Feng, and F. Xie, 2015: A decadal-scale teleconnection between the North Atlantic Oscillation and subtropical eastern Australian rainfall. J. Climate, 28, 10741092, https://doi.org/10.1175/JCLI-D-14-00372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J.-Y. Moon, 2017: An anomalous genesis potential index for MJO modulation of tropical cyclones. J. Climate, 30, 40214035, https://doi.org/10.1175/JCLI-D-16-0749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, https://doi.org/10.1126/science.1116448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., J. P. Li, W. S. Tian, J. K. Zhang, and C. Sun, 2014: The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environ. Res. Lett., 9, 064020, https://doi.org/10.1088/1748-9326/9/6/064020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, N., J. P. Li, and Y. K. Li, 2014: Response of the tropical atmosphere to isolated equatorially asymmetric heating (in Chinese). Chin. J. Atmos. Sci., 38, 11471158.

    • Search Google Scholar
    • Export Citation
  • Yoshida, R., Y. Kajikawa, and H. Ishikawa, 2014: Impact of boreal summer intraseasonal oscillation on environment of tropical cyclone genesis over the western North Pacific. SOLA, 10, 1518, https://doi.org/10.2151/sola.2014-004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. H., T. Li, Z. M. Tan, and Z. W. Zhu, 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865877, https://doi.org/10.1007/s00382-015-2618-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yumoto, M., and T. Matsuura, 2001: Interdecadal variability of tropical cyclone activity in the western North Pacific. J. Meteor. Soc. Japan, 79, 2335, https://doi.org/10.2151/jmsj.79.23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R. F., Y. Q. Wang, and X. T. Lei, 2011a: Contributions of ENSO and east Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521, https://doi.org/10.1175/2010JCLI3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R. F., Y. Q. Wang, and C.-C. Wu, 2011b: Impact of SSTA in east Indian Ocean on the frequency of northwest Pacific tropical cyclones: A regional atmospheric model study. J. Climate, 24, 62276242, https://doi.org/10.1175/JCLI-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R. F., Y. Q. Wang, and M. Wen, 2013: The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. J. Climate, 26, 24082415, https://doi.org/10.1175/JCLI-D-12-00798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R. F., Y. Q. Wang, and L. Tao, 2014: Intensified impact of east Indian Ocean SST anomaly on tropical cyclone genesis frequency over the western North Pacific. J. Climate, 27, 87248739, https://doi.org/10.1175/JCLI-D-14-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R. F., Y. H. Ding, L. G. Wu, and X. T. Lei, 2016: Role of ENSO in the interannual relationship between Tibetan Plateau winter snow cover and northwest Pacific tropical cyclone genesis frequency. Sci. China Earth Sci., 59, 20092021, https://doi.org/10.1007/s11430-015-5559-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R. F., B. D. Chen, and Y. H. Ding, 2017: Impacts of SST anomalies in the Indian-Pacific basin on northwest Pacific tropical cyclone activities during three super El Niño years. Chin. J. Oceanol. Limnol., https://doi.org/10.1007/s00343-018-6321-8, in press.

    • Crossref
    • Export Citation
  • Zhang, J. W., J. P. Li, and Y. J. Li, 2015: Intraseasonal characteristics of the Indo–west Pacific convection oscillation (in Chinese). Chin. J. Atmos. Sci., 39, 221234.

    • Search Google Scholar
    • Export Citation
  • Zhao, H. K., X. Jiang, and L. Wu, 2015a: Modulation of northwest Pacific tropical cyclone genesis by the intraseasonal variability. J. Meteor. Soc. Japan, 93, 8197, https://doi.org/10.2151/jmsj.2015-006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H. K., R. Yoshida, and G. B. Raga, 2015b: Impact of the Madden–Julian oscillation on western North Pacific tropical cyclogenesis associated with large-scale patterns. J. Appl. Meteor. Climatol., 54, 14131429, https://doi.org/10.1175/JAMC-D-14-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J. W., R. F. Zhan, Y. Q. Wang, and L. Tao, 2016: Intensified interannual relationship between tropical cyclone genesis frequency over the northwest Pacific and the SST gradient between the southwest Pacific and the western Pacific warm pool since the mid-1970s. J. Climate, 29, 38113830, https://doi.org/10.1175/JCLI-D-15-0729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, B. Z., and B. Wang, 1993: The 30–60-day convection seesaw between the tropical Indian and western Pacific Oceans. J. Atmos. Sci., 50, 184199, https://doi.org/10.1175/1520-0469(1993)050<0184:TDCSBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C. W., T. Nakazawa, and J. P. Li, 2004: Modulation of tropical depression/cyclone over the Indian–western Pacific oceans by Madden–Julian oscillation (in Chinese). Acta Meteor. Sin., 62, 4250.

    • Search Google Scholar
    • Export Citation
  • Zhu, Q. G., J. R. Lin, S. W. Shou, and D. S. Tang, 2007: Principles and Methods of Synoptic Meteorology (in Chinese). China Meteorological Press, 649 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 10
PDF Downloads 33 33 6

Modulation of Tropical Cyclogenesis Location and Frequency over the Indo–Western North Pacific by the Intraseasonal Indo–Western Pacific Convection Oscillation during the Boreal Extended Summer

View More View Less
  • 1 College of Global Change and Earth System Sciences, Beijing Normal University, Beijing, China
  • | 2 State Key Laboratory of Earth Surface Processes and Resource Ecology, and College of Global Change and Earth System Sciences, Beijing Normal University, Beijing, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 4 Chengdu Meteorological Bureau, Chengdu, China
  • | 5 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
© Get Permissions
Restricted access

Abstract

The influence of the intraseasonal Indo–western Pacific convection oscillation (IPCO) on tropical cyclone (TC) genesis location and frequency over the Indo–western North Pacific (WNP) during the boreal extended summer (May–October) is explored. Observational analysis shows that the impacts of the intraseasonal IPCO on TCs over the Indo–WNP include an evident “phase lock of TC genesis location” and distinct differences in TC frequency. In the WNP, in the positive intraseasonal IPCO phase, the atmosphere gains heat through the release of latent heat in cumulus convective condensation, and the anomalous cyclonic circulation weakens the western Pacific subtropical high (WPSH) and enhances TC genesis, thereby tending to produce many more TCs. Moreover, the diminished WPSH and the westward shift of the centers of anomalous cyclonic circulations lock TC genesis locations to the west WNP and lower latitudes (around 5°–20°N), especially in the South China Sea. The almost opposite situation occurs in a negative phase. In the north Indian Ocean, the total TC genesis frequencies in the two intraseasonal IPCO phases are approximate. However, in the positive intraseasonal IPCO phase, the environmental conditions to the north of 13°N are similar to those in the WNP except without the WPSH control, whereas south of 13°N the situation is reversed, leading to a northward shift of the TC genesis location (around 13°–20°N). The negative phase reflects an opposite situation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jianping Li, ljp@bnu.edu.cn

Abstract

The influence of the intraseasonal Indo–western Pacific convection oscillation (IPCO) on tropical cyclone (TC) genesis location and frequency over the Indo–western North Pacific (WNP) during the boreal extended summer (May–October) is explored. Observational analysis shows that the impacts of the intraseasonal IPCO on TCs over the Indo–WNP include an evident “phase lock of TC genesis location” and distinct differences in TC frequency. In the WNP, in the positive intraseasonal IPCO phase, the atmosphere gains heat through the release of latent heat in cumulus convective condensation, and the anomalous cyclonic circulation weakens the western Pacific subtropical high (WPSH) and enhances TC genesis, thereby tending to produce many more TCs. Moreover, the diminished WPSH and the westward shift of the centers of anomalous cyclonic circulations lock TC genesis locations to the west WNP and lower latitudes (around 5°–20°N), especially in the South China Sea. The almost opposite situation occurs in a negative phase. In the north Indian Ocean, the total TC genesis frequencies in the two intraseasonal IPCO phases are approximate. However, in the positive intraseasonal IPCO phase, the environmental conditions to the north of 13°N are similar to those in the WNP except without the WPSH control, whereas south of 13°N the situation is reversed, leading to a northward shift of the TC genesis location (around 13°–20°N). The negative phase reflects an opposite situation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jianping Li, ljp@bnu.edu.cn
Save