• Banks, H. T., and J. M. Gregory, 2006: Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake. Geophys. Res. Lett., 33, L07608, https://doi.org/10.1029/2005GL025352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernardello, R., I. Marinov, J. B. Palter, E. D. Galbraith, and J. L. Sarmiento, 2014: Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model. Geophys. Res. Lett., 41, 72627269, https://doi.org/10.1002/2014GL061313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., C. Stephens, J. I. Antonov, M. E. Conkright, L. A. Locarnini, T. D. O’Brien, and H. E. Garcia, 2002: Salinity. Vol. 2, World Ocean Atlas 2001, NOAA Atlas NESDIS 49, 165 pp.

  • Cabré, A., I. Marinov, and A. Gnanadesikan, 2017: Global atmospheric teleconnections and multidecadal climate oscillations driven by Southern Ocean convection. J. Climate, 30, 81078126, https://doi.org/10.1175/JCLI-D-16-0741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carsey, F. D., 1980: Microwave observation of the Weddell Polynya. Mon. Wea. Rev., 108, 20322044, https://doi.org/10.1175/1520-0493(1980)108<2032:MOOTWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., J. B. Palter, E. D. Galbraith, R. Bernardello, and I. Marinov, 2014: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Climate Change, 4, 278282, https://doi.org/10.1038/nclimate2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devries, T., M. Holzer, and F. Primeau, 2017: Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542, 215218, https://doi.org/10.1038/nature21068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., A. K. Morrison, S. M. Griffies, I. Frenger, H. Zanowski, and M. Winton, 2017: Preconditioning of the Weddell Sea polynya by the ocean mesoscale and dense water overflows. J. Climate, 30, 77197737, https://doi.org/10.1175/JCLI-D-16-0586.1.

    • Crossref
    • Export Citation
  • Dunne, J. P., and et al. , 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, https://doi.org/10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetterer, F., K. Knowles, W. Meier, M. Savoie, and A. K. Windnagel, 2016, updated daily: Sea Ice Index, version 3, National Snow and Ice Data Center, http://dx.doi.org/10.7265/N5K072F8.

    • Crossref
    • Export Citation
  • Frölicher, T. L., F. Joos, G. K. Plattner, M. Steinacher, and S. C. Doney, 2009: Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle–climate model ensemble. Global Biogeochem. Cycles, 23, GB1003, https://doi.org/10.1029/2008GB003316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., M. Winton, and J. L. Sarmiento, 2014: Continued global warming after CO2 emissions stoppage. Nat. Climate Change, 4, 4044, https://doi.org/10.1038/nclimate2060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28, 862886, https://doi.org/10.1175/JCLI-D-14-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., A. Gnanadesikan, J. P. Dunne, and M. R. Hiscock, 2010: Regional impacts of iron-light colimitation in a global biogeochemical model. Biogeosciences, 7, 10431064, https://doi.org/10.5194/bg-7-1043-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., and et al. , 2011: Climate variability and radiocarbon in the CM2Mc Earth system model. J. Climate, 24, 42304254, https://doi.org/10.1175/2011JCLI3919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., and et al. , 2015: Coupled functionality with minimal computation: Promise and pitfalls of reduced-tracer ocean biogeochemistry models. J. Adv. Model. Earth Syst., 7, 20122028, https://doi.org/10.1002/2015MS000463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463–474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Export Citation
  • Gnanadesikan, A., M.-A. Pradal, and R. P. Abernathey, 2015: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett., 42, 42494255, https://doi.org/10.1002/2015GL064100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1982: Weddell Deep Water variability. J. Mar. Res., 40, 199217.

  • Griffies, S. M., and et al. , 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, https://doi.org/10.1175/JCLI-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, N., J. Sarmiento, and T. Stocker, 1996: An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochem. Cycles, 10, 809837, https://doi.org/10.1029/96GB01608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., F. Primeau, and M. Holzer, 2012: Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth Planet. Sci. Lett., 325–326, 116125, https://doi.org/10.1016/j.epsl.2012.01.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landschutzer, P., and et al. , 2015: The reinvigoration of the Southern Ocean carbon sink. Science, 349, 12211224, https://doi.org/10.1126/science.aab2620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., T. Martin, and W. Park, 2013: Southern Ocean sector centennial climate variability and recent decadal trends. J. Climate, 26, 77677782, https://doi.org/10.1175/JCLI-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenton, A., F. Codron, L. Bopp, N. Metzl, P. Cadule, A. Tagliabue, and J. Le Sommer, 2009: Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys. Res. Lett., 36, L12606, https://doi.org/10.1029/2009GL038227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., J. C. Orr, P. Monfray, and O. Aumont, 2000: Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Global Biogeochem. Cycles, 14, 12471265, https://doi.org/10.1029/1999GB900049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., N. Gruber, S. C. Doney, and I. D. Lima, 2007: Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the southern annular mode. Global Biogeochem. Cycles, 21, GB2026, https://doi.org/10.1029/2006GB002900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marinov, I., A. Gnanadesikan, J. L. Sarmiento, J. R. Toggweiler, M. Follows, and B. K. Mignone, 2008: Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Global Biogeochem. Cycles, 22, GB3007, https://doi.org/10.1029/2007GB002958.

    • Crossref
    • Export Citation
  • Martinson, D. G., P. D. Killworth, and A. L. Gordon, 1981: A convective model for the Weddell Polynya. J. Phys. Oceanogr., 11, 466488, https://doi.org/10.1175/1520-0485(1981)011<0466:ACMFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and A. Colin de Verdière, 2002: SOFAR floats reveal midlatitude intermediate North Atlantic general circulation. Part I: A Lagrangian descriptive view. J. Phys. Oceanogr., 32, 20202033, https://doi.org/10.1175/1520-0485(2002)032<2020:SFRMIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pradal, M.-A., and A. Gnanadesikan, 2014: How does the Redi parameter for mesoscale mixing impact global climate in an Earth system model? J. Adv. Model. Earth Syst., 6, 586601, https://doi.org/10.1002/2013MS000273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2012: Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Climate, 25, 58305844, https://doi.org/10.1175/JCLI-D-11-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, A. M., and A. Gnanadesikan, 2014: Understanding multidecadal variability in ENSO amplitude. J. Climate, 27, 40374051, https://doi.org/10.1175/JCLI-D-13-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and et al. , 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, https://doi.org/10.1126/science.1097403.

  • Sarmiento, J. L., and J. R. Toggweiler, 1984: A new model for the role of the oceans in determining atmospheric pCO2. Nature, 308, 621–624, https://doi.org/10.1038/308621a0.

    • Crossref
    • Export Citation
  • Sarmiento, J. L., and C. Le Quéré, 1996: Oceanic carbon dioxide uptake in a model. Science, 274, 13461350, https://doi.org/10.1126/science.274.5291.1346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., A. Gnanadesikan, D. W. Waugh, and M.-A. Pradal, 2017: Transient response of the Southern Ocean to changing ozone: Regional responses and physical mechanisms. J. Climate, 30, 2463–2480, https://doi.org/10.1175/JCLI-D-16-0474.1.

    • Crossref
    • Export Citation
  • Stephens, C., J. I. Antonov, T. P. Boyer, M. E. Conkright, R. A. Locarini, T. D. O’Brien, and H. E. Garcia, 2002: Temperature. Vol. 1, World Ocean Atlas 2001, NOAA Atlas NESDIS 49, 167 pp.

  • Thomas, J. L., D. W. Waugh, and A. Gnanadesikan, 2015: Southern Hemisphere extratropical circulation: Recent trends and natural variability. Geophys. Res. Lett., 42, 55085515, https://doi.org/10.1002/2015GL064521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., T. M. Hall, B. I. McNeil, R. Key, and R. J. Matear, 2006: Anthropogenic CO2 in the oceans estimated using transit time distributions. Tellus, 58B, 376389, https://doi.org/10.1111/j.1600-0889.2006.00222.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., F. Primeau, T. DeVries, and M. Holzer, 2013: Recent changes in the ventilation of the Southern Oceans. Science, 339, 568570, https://doi.org/10.1126/science.1225411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., S. M. Griffies, B. L. Samuels, J. L. Sarmiento, and T. L. Frölicher, 2013: Connecting changing ocean circulation with changing climate. J. Climate, 26, 22682278, https://doi.org/10.1175/JCLI-D-12-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and G. K. Vallis, 2012: The passive and active nature of ocean heat uptake in idealized climate change experiments. Climate Dyn., 38, 667684, https://doi.org/10.1007/s00382-011-1063-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 93 18
PDF Downloads 85 85 12

Relationship between Ocean Carbon and Heat Multidecadal Variability

View More View Less
  • 1 Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland
© Get Permissions
Restricted access

Abstract

The global ocean serves as a critical sink for anthropogenic carbon and heat. While significant effort has been dedicated to quantifying the oceanic uptake of these quantities, less research has been conducted on the mechanisms underlying decadal-to-centennial variability in oceanic heat and carbon. Therefore, little is understood about how much such variability may have obscured or reinforced anthropogenic change. Here the relationship between oceanic heat and carbon content is examined in a suite of coupled climate model simulations that use different parameterization settings for mesoscale mixing. The differences in mesoscale mixing result in very different multidecadal variability, especially in the Weddell Sea where the characteristics of deep convection are drastically changed. Although the magnitude and frequency of variability in global heat and carbon content is different across the model simulations, there is a robust anticorrelation between global heat and carbon content in all simulations. Global carbon content variability is primarily driven by Southern Ocean carbon variability. This contrasts with global heat content variability. Global heat content is primarily driven by variability in the southern midlatitudes and tropics, which opposes the Southern Ocean variability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0134.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jordan Thomas, jthom143@jhu.edu

Abstract

The global ocean serves as a critical sink for anthropogenic carbon and heat. While significant effort has been dedicated to quantifying the oceanic uptake of these quantities, less research has been conducted on the mechanisms underlying decadal-to-centennial variability in oceanic heat and carbon. Therefore, little is understood about how much such variability may have obscured or reinforced anthropogenic change. Here the relationship between oceanic heat and carbon content is examined in a suite of coupled climate model simulations that use different parameterization settings for mesoscale mixing. The differences in mesoscale mixing result in very different multidecadal variability, especially in the Weddell Sea where the characteristics of deep convection are drastically changed. Although the magnitude and frequency of variability in global heat and carbon content is different across the model simulations, there is a robust anticorrelation between global heat and carbon content in all simulations. Global carbon content variability is primarily driven by Southern Ocean carbon variability. This contrasts with global heat content variability. Global heat content is primarily driven by variability in the southern midlatitudes and tropics, which opposes the Southern Ocean variability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0134.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jordan Thomas, jthom143@jhu.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.20 MB)
Save