• Albergel, C., P. de Rosnay, C. Gruhier, J. Muñoz-Sabater, S. Hasenauer, L. Isaksen, Y. Kerr, and W. Wagner, 2012: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ., 118, 215226, https://doi.org/10.1016/j.rse.2011.11.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, H. Y., K. Yang, and C. H. Wang, 2017: Characteristics of GLDAS soil-moisture data on the Tibet Plateau. Sci. Cold Arid Reg., 9, 127141.

    • Search Google Scholar
    • Export Citation
  • Bounoua, L., and T. N. Krishnamurti, 1993: Influence of soil moisture on the Sahelian climate prediction I. Meteor. Atmos. Phys., 52, 183203, https://doi.org/10.1007/BF01031877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193202, https://doi.org/10.1002/qj.49710142802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colliander, A., and et al. , 2017: Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ., 191, 215231, https://doi.org/10.1016/j.rse.2017.01.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and et al. , 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, https://doi.org/10.1175/JCLI3761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conil, S., H. Douville, and S. Tyteca, 2007: The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments. Climate Dyn., 28, 125145, https://doi.org/10.1007/s00382-006-0172-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., M. J. Fennessy, and L. Marx, 2003: Low skill in dynamical prediction of boreal summer climate: Grounds for looking beyond sea surface temperature. J. Climate, 16, 9951002, https://doi.org/10.1175/1520-0442(2003)016<0995:LSIDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397, https://doi.org/10.1175/BAMS-87-10-1381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J. R., W. Ni-Meister, and P. R. Houser, 2007: Impacts of vegetation and cold season processes on soil moisture and climate relationships over Eurasia. J. Geophys. Res., 112, D09106, https://doi.org/10.1029/2006JD007774.

    • Search Google Scholar
    • Export Citation
  • Draper, C. S., J.-F. Mahfouf, and J. P. Walker, 2009: An EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme. J. Geophys. Res., 114, D20104, https://doi.org/10.1029/2008JD011650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, C. B., and Z. M. Zheng, 1998: Monsoon regions: The highest rate of precipitation changes observed from global data. Chin. Sci. Bull., 43, 662666, https://doi.org/10.1007/BF02883571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Reanalysis Project Rep. Series 1, 72 pp.

  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 38-138-4, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Q. Zhang, 2010a: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., F. Q. Zhang, and J. W. Nielsen-Gammon, 2010b: Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study. Geophys. Res. Lett., 37, L08802, https://doi.org/10.1029/2010GL043017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and S.-Y. Hong, 2007: Impact of soil moisture anomalies on summer rainfall over East Asia: A regional climate model study. J. Climate, 20, 57325743, https://doi.org/10.1175/2006JCLI1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., and G. Wang, 2007: Impact of initial soil moisture anomalies on subsequent precipitation over North America in the coupled land–atmosphere model CAM3–CLM3. J. Hydrometeor., 8, 513533, https://doi.org/10.1175/JHM611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, https://doi.org/10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and et al. , 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., R. H. Reichle, R. D. Koster, W. T. Crow, and C. D. Peters-Lidard, 2009: Role of subsurface physics in the assimilation of surface soil moisture observations. J. Hydrometeor., 10, 15341547, https://doi.org/10.1175/2009JHM1134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and et al. , 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 24462469, https://doi.org/10.1175/JHM-D-13-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y. Qian, and X. Bian, 2003: Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part I: Seasonal statistics. J. Climate, 16, 18921911, https://doi.org/10.1175/1520-0442(2003)016<1892:HOTWUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. L., C. H. Wang, and D. Wu, 2016: Changes in precipitation recycling over arid regions in the Northern Hemisphere. Theor. Appl. Climatol., 131, 489502, https://doi.org/10.1007/s00704-016-1978-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., M. Xu, K. E. Kunkel, G. A. Grell, and J. S. Kain, 2007: Regional climate model simulation of U.S.–Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J. Climate, 20, 52015207, https://doi.org/10.1175/JCLI4306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L. F., A. M. Ebtehaj, J. Wang, and R. L. Bras, 2017: Soil moisture background error covariance and data assimilation in a coupled land-atmosphere model. Water Resour. Res., 53, 13091335, https://doi.org/10.1002/2015WR017548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., A. P. Tsimpidi, Y. Hu, B. Stone, A. G. Russell, and A. Nenes, 2012: Differences between downscaling with spectral and grid nudging using WRF. Atmos. Chem. Phys., 12, 36013610, https://doi.org/10.5194/acp-12-3601-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., H. V. Gupta, S. Sorooshian, L. A. Bastidas, and W. J. Shuttleworth, 2005: Constraining land surface and atmospheric parameters of a locally coupled model using observational data. J. Hydrometeor., 6, 156172, https://doi.org/10.1175/JHM407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. D. Peters-Lidard, S. V. Kumar, J. L. Foster, M. Shaw, Y. Tian, and G. M. Fall, 2013: Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. Adv. Water Resour., 54, 208227, https://doi.org/10.1016/j.advwatres.2013.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, R., E. L. Davin, and S. I. Seneviratne, 2012: Modeling land–climate coupling in Europe: Impact of land surface representation on climate variability and extremes. J. Geophys. Res., 117, D20109, https://doi.org/10.1029/2012JD017755.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1987: Large-scale changes of soil wetness induced by an increase in atmospheric carbon dioxide. J. Atmos. Sci., 44, 12111235, https://doi.org/10.1175/1520-0469(1987)044<1211:LSCOSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, https://doi.org/10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Prediction, 2004: NCEP ADP global surface observational weather data, http://rda.ucar.edu/datasets/ds461.0/.

  • Nijssen, B., R. Schnur, and D. P. Lettenmaier, 2001: Global retrospective estimation of soil moisture using the Variable Infiltration Capacity land surface model, 1980–93. J. Climate, 14, 17901808, https://doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ni-Meister, W., 2008: Recent advances on soil moisture data assimilation. Phys. Geogr., 29, 1937.

  • Ni-Meister, W., J. P. Walker, and P. R. Houser, 2005: Soil moisture initialization for climate prediction: Characterization of model and observation errors. J. Geophys. Res., 110, D13111, https://doi.org/10.1029/2004JD005745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ni-Meister, W., P. R. Houser, and J. P. Walker, 2006: Soil moisture initialization for climate prediction: Assimilation of scanning multifrequency microwave radiometer soil moisture data into a land surface model. J. Geophys. Res., 111, D20102, https://doi.org/10.1029/2006JD007190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobre, P., A. D. Moura, and L. Sun, 2001: Dynamical downscaling of seasonal climate prediction over Nordeste Brazil with ECHAM3 and NCEP’s regional spectral models at IRI. Bull. Amer. Meteor. Soc., 82, 27872796, https://doi.org/10.1175/1520-0477(2001)082<2787:DDOSCP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. A. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and A. Xiu, 2003: Development of a land surface model. Part II: Data assimilation. J. Appl. Meteor., 42, 18111822, https://doi.org/10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and R. Gilliam, 2009: An indirect data assimilation scheme for deep soil temperature in the Pleim–Xiu land surface model. J. Appl. Meteor. Climatol., 48, 13621376, https://doi.org/10.1175/2009JAMC2053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z. X., and W.-K. Tao, 2004: Mesoscale assimilation of TMI rainfall data with 4DVAR: Sensitivity studies. J. Meteor. Soc. Japan, 82, 13891397, https://doi.org/10.2151/jmsj.2004.1389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, J. Dong, and A. A. Berg, 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5, 430442, https://doi.org/10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, P. Liu, S. P. P. Mahanama, E. G. Njoku, and M. Owe, 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, https://doi.org/10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81, 12811299, https://doi.org/10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and et al. , 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabater, J. M., L. Jarlan, J.-C. Calvet, F. Bouyssel, and P. De Rosnay, 2007: From near-surface to root-zone soil moisture using different assimilation techniques. J. Hydrometeor., 8, 194206, https://doi.org/10.1175/JHM571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., S. V. Kumar, C. D. Peters-Lidard, and P. M. Lawston, 2016: Impact of soil moisture assimilation on land surface model spinup and coupled land–atmosphere prediction. J. Hydrometeor., 17, 517540, https://doi.org/10.1175/JHM-D-15-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seaman, N. L., D. R. Stauffer, and A. M. Lario-Gibbs, 1995: A multiscale four-dimensional data assimilation system applied in the San Joaquin Valley during SARMAP. Part I: Modeling design and basic performance characteristics. J. Appl. Meteor., 34, 17391761, https://doi.org/10.1175/1520-0450(1995)034<1739:AMFDDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Small, E. E., F. Giorgi, and L. C. Sloan, 1999: Regional climate model simulation of precipitation in central Asia: Mean and interannual variability. J. Geophys. Res., 104, 65636582, https://doi.org/10.1029/98JD02501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, P. K., D. Han, M. A. Rico-Ramirez, P. O’Neill, T. Islam, M. Gupta, and Q. Dai, 2015: Performance evaluation of WRF-Noah land surface model estimated soil moisture for hydrological application: Synergistic evaluation using SMOS retrieved soil moisture. J. Hydrol., 529, 200212, https://doi.org/10.1016/j.jhydrol.2015.07.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 12501277, https://doi.org/10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., N. L. Seaman, and F. S. Binkowski, 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119, 734754, https://doi.org/10.1175/1520-0493(1991)119<0734:UOFDDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzeng, R.-Y., and Y.-H. Lee, 2001: The effects of land-surface characteristics on the East Asian summer monsoon. Climate Dyn., 17, 317326, https://doi.org/10.1007/s003820000115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viterbo, P., 2002: The role of the land surface in the climate system. ECWMF Meteorological Training Course Lecture Series, 19 pp., https://www.ecmwf.int/sites/default/files/elibrary/2002/16961-role-land-surface-climate-system.pdf.

  • Von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 36643673, https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldron, K. M., J. Paegle, and J. D. Horel, 1996: Sensitivity of a spectrally filtered and nudged limited-area model to outer model options. Mon. Wea. Rev., 124, 529547, https://doi.org/10.1175/1520-0493(1996)124<0529:SOASFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. P., and P. R. Houser, 2001: A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. J. Geophys. Res., 106, 11 76111 774, https://doi.org/10.1029/2001JD900149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C. H., X.-Z. Liang, and A. N. Samel, 2011: AMIP GCM simulations of precipitation variability over the Yangtze River valley. J. Climate, 24, 21162133, https://doi.org/10.1175/2011JCLI3631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, Y. H. Wu, T. W. Ford, and S. M. Quiring, 2015: Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. J. Hydrometeor., 16, 19621980, https://doi.org/10.1175/JHM-D-14-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., C. Wang, and H. Bao, 2016: Contribution of soil moisture variability to summer precipitation in the Northern Hemisphere. J. Geophys. Res. Atmos., 121, 12 10812 124, https://doi.org/10.1002/2016JD025644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C., R. T. Wetherald, and S. Manabe, 1984: The effect of soil moisture on the short-term climate and hydrology change—A numerical experiment. Mon. Wea. Rev., 112, 474490, https://doi.org/10.1175/1520-0493(1984)112<0474:TEOSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., and X.-Z. Liang, 2011: Improving cold season precipitation prediction by the nested CWRF-CFS system. Geophys. Res. Lett., 38, L02706, https://doi.org/10.1029/2010GL046104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Yang, and C. Wang, 2015: The effects of assimilating conventional and ATOVS data on forecasted near-surface wind with WRF-3DVAR. Mon. Wea. Rev., 143, 153164, https://doi.org/10.1175/MWR-D-14-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. Y., W.-C. Wang, and J. Wei, 2008: Assessing land–atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res., 113, D17119, https://doi.org/10.1029/2008JD009807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. Y., L. Wu, and W. J. Dong, 2011: Land–atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res., 116, D05117, https://doi.org/10.1029/2010JD014714.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 6
PDF Downloads 10 10 3

Improvement of Short-Term Climate Prediction with Indirect Soil Variables Assimilation in China

View More View Less
  • 1 Key Laboratory of Arid Climate Change and Disaster Reduction of Gansu Province, College of Atmosphere Science, Lanzhou University, Lanzhou, China
© Get Permissions
Restricted access

Abstract

Short-term climate prediction based on a regional climate dynamical model heavily depends on atmospheric forcing and initial soil moisture state. In this study, the Weather Research and Forecasting (WRF) Model with different nudging schemes is used for approximate 2-yr simulations for investigating the importance of soil variables in seasonal temperature and precipitation simulations. The results show that the improvement of seasonal climate simulation (precipitation and air temperature) is more evident in the experiment of assimilating both soil and atmospheric variables than that in the experiments of assimilating atmospheric variables only. Further investigation of the impact of indirectly assimilating soil moisture on precipitation prediction with an indirect soil nudging (ISN) scheme shows that the precipitation reproducibility in summer is better than that in winter, and the effect of ISN is particularly prominent in the region where seasonal precipitation exceeds 200 mm. Moreover, statistical results also illustrate that initial soil moisture plays a crucial role in seasonal precipitation forecasts because of its slowly evolving nature, and its effect is more distinct in semiarid and semihumid regions than in arid and humid regions. The effects of indirectly assimilating soil moisture on precipitation can last two and three months in semiarid and semihumid areas, respectively.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chenghai Wang, wch@lzu.edu.cn

Abstract

Short-term climate prediction based on a regional climate dynamical model heavily depends on atmospheric forcing and initial soil moisture state. In this study, the Weather Research and Forecasting (WRF) Model with different nudging schemes is used for approximate 2-yr simulations for investigating the importance of soil variables in seasonal temperature and precipitation simulations. The results show that the improvement of seasonal climate simulation (precipitation and air temperature) is more evident in the experiment of assimilating both soil and atmospheric variables than that in the experiments of assimilating atmospheric variables only. Further investigation of the impact of indirectly assimilating soil moisture on precipitation prediction with an indirect soil nudging (ISN) scheme shows that the precipitation reproducibility in summer is better than that in winter, and the effect of ISN is particularly prominent in the region where seasonal precipitation exceeds 200 mm. Moreover, statistical results also illustrate that initial soil moisture plays a crucial role in seasonal precipitation forecasts because of its slowly evolving nature, and its effect is more distinct in semiarid and semihumid regions than in arid and humid regions. The effects of indirectly assimilating soil moisture on precipitation can last two and three months in semiarid and semihumid areas, respectively.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chenghai Wang, wch@lzu.edu.cn
Save