• Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, https://doi.org/10.1109/TAC.1974.1100705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A. M., B. R. Lintner, K. L. Findell, and A. Giannini, 2017: Soil moisture influence on seasonality and large-scale circulation in simulations of the West African monsoon. J. Climate, 30, 22952317, https://doi.org/10.1175/JCLI-D-15-0877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. H. Ball, 1997: Albedo over the boreal forest. J. Geophys. Res., 102, 28 90128 909, https://doi.org/10.1029/96JD03876.

  • Bonan, G. B., 2002: Ecological Climatology: Concepts and Applications. Cambridge University Press, 678 pp.

  • Bonan, G. B., D. Pollard, and S. L. Thompson, 1992: Effects of boreal forest vegetation on global climate. Nature, 359, 716718, https://doi.org/10.1038/359716a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buermann, W., 2002: The impact and response of vegetation to climate at interannual timescales. Ph.D. thesis, Boston University, 140 pp.

  • Charney, J. G., 1975: Dynamics of desert and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193202, https://doi.org/10.1002/qj.49710142802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., W. J. Quirk, S. H. Chow, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34, 13661385, https://doi.org/10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., M. Notaro, Z. Liu, and Y. Liu, 2012: Simulated local remote biophysical effects of afforestation over the Southeast United States in boreal summer. J. Climate, 15, 26162631, https://doi.org/10.1175/JCLI-D-11-00317.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2013: Trends in land–atmosphere interactions from CMIP5 simulations. J. Hydrometeor., 14, 829849, https://doi.org/10.1175/JHM-D-12-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, R., J. E. Kutzbach, J. Foley, and D. Pollard, 2000: Fully coupled climate/dynamical vegetation model simulations over northern Africa during the mid-Holocene. Climate Dyn., 16, 561573, https://doi.org/10.1007/s003820000065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., 1982: The Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrial and Applied Mathematics, 92 pp.

    • Crossref
    • Export Citation
  • Findell, K., P. Gentine, B. R. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, https://doi.org/10.1038/ngeo1174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and et al. , 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., M. T. Coe, M. Scheffer, and G. L. Wang, 2003: Regime shifts in the Sahara and Sahel: Interactions between ecological and climatic systems in northern Africa. Ecosystems, 6, 524539, https://doi.org/10.1007/s10021-002-0227-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602607, https://doi.org/10.1038/320602a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030, https://doi.org/10.1126/science.1089357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., M. Biasutti, and M. M. Verstraete, 2008: A climate model-based review of drought in the Sahel: Desertification, the re-greening and climate change. Global Planet. Change, 64, 119128, https://doi.org/10.1016/j.gloplacha.2008.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, J. K., A. Konings, S. H. Alemohammad, J. Berry, D. Entekhabi, J. Kolassa, J.-E. Lee, and P. Gentine, 2017: Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci., 10, 410414, https://doi.org/10.1038/ngeo2957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, T. DelSole, and R. D. Koster, 2012: Rebound in atmospheric predictability and the role of the land surface. J. Climate, 25, 47444749, https://doi.org/10.1175/JCLI-D-11-00651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • He, Y., and E. Lee, 2016: Empirical relationships of sea surface temperature and vegetation activity with summer rainfall variability over the Sahel. Earth Interact., 20, 118, https://doi.org/10.1175/EI-D-15-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., K. McGuffie, and C. Gross, 1995: Sensitivity of global climate model simulations to increased stomatal resistance and CO2 increases. J. Climate, 8, 17381756, https://doi.org/10.1175/1520-0442(1995)008<1738:SOGCMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocking, R. R., 1976: The analysis and selection of variables in linear regression. Biometrics, 32, 149, https://doi.org/10.2307/2529336.

  • Hoerling, M. P., J. W. Hurrell, J. Eischeid, and A. Phillips, 2006: Detection and attribution of twentieth-century northern and southern African rainfall change. J. Climate, 19, 39894008, https://doi.org/10.1175/JCLI3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, F. M., and et al. , 2008: The Carbon-Land Model Project (C-LAMP): A protocol and evaluation metrics for global terrestrial biogeochemistry models. Int. Congress on Environmental Modeling and Software/Fourth Biennial Meeting on Integrating Science and Information Technology for Environmental Assessment and Decision Making, Barcelona, Spain, International Environmental Modeling and Software Society, 1039–1048.

  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2008: CICE: The Los Alamos Sea Ice Model: Documentation and software, version 4.0. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, H. G., 1983: Plants and Microclimate. Cambridge University Press, 323 pp.

  • Kaufmann, R. K., D. I. Stern, R. B. Myneni, C. J. Tucker, D. Slayback, N. V. Shabanov, and J. Pinzon, 2003: The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophys. Res. Lett., 30, 2147, https://doi.org/10.1029/2003GL018251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, C., J. Bliefernicht, D. Heinzeller, U. Gessner, I. Klein, and H. Kunstmann, 2017: Feedback of observed interannual vegetation change: A regional climate model analysis for the West African monsoon. Climate Dyn., 48, 28372858, https://doi.org/10.1007/s00382-016-3237-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2010: The contribution of land surface initialization to subseasonal forecast skill: First results from the GLACE-2 project. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contribution to subseasonal forecast skill. J. Hydrometeor., 12, 805822, https://doi.org/10.1175/2011JHM1365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., G. Bonan, J. Foley, and S. P. Harrison, 1996: Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature, 384, 623626, https://doi.org/10.1038/384623a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and et al. , 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lee, E., Y. He, M. Zhou, and J. Liang, 2015: Potential feedback of recent vegetation changes on summer rainfall in the Sahel. Phys. Geogr., 36, 449470, https://doi.org/10.1080/02723646.2015.1120139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., M. Notaro, J. Kutzbach, and N. Liu, 2006: Assessing global vegetation–climate feedbacks from observations. J. Climate, 19, 787814, https://doi.org/10.1175/JCLI3658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and et al. , 2007: Simulating the transient evolution and abrupt change of Northern African atmosphere–ocean–terrestrial ecosystem in the Holocene. Quat. Sci. Rev., 26, 18181837, https://doi.org/10.1016/j.quascirev.2007.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., N. Wen, and Y. Liu, 2008: On the assessment of nonlocal climate feedback. Part I: The generalized equilibrium feedback assessment. J. Climate, 21, 134148, https://doi.org/10.1175/2007JCLI1826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., M. Notaro, and R. Gallimore, 2010: Indirect vegetation–soil moisture feedback with application to Holocene North Africa climate. Global Change Biol., 16, 17331743, https://doi.org/10.1111/j.1365-2486.2009.02087.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Los, L. O., G. P. Weedon, P. R. J. North, J. D. Kaduk, C. M. Taylor, and P. M. Cox, 2006: An observation-based estimate of the strength of rainfall-vegetation interactions in the Sahel. Geophys. Res. Lett., 33, L16402, https://doi.org/10.1029/2006GL027065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., and T. L. Delworth, 2005: Oceanic forcing of the late 20th century Sahel drought. Geophys. Res. Lett., 32, L22706, https://doi.org/10.1029/2005GL022980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR, 289 pp.

  • Notaro, M., and Z. Liu, 2008: Statistical and dynamical assessment of simulated vegetation feedbacks on climate over the boreal forests. Climate Dyn., 31, 691712, https://doi.org/10.1007/s00382-008-0368-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., Z. Liu, and J. W. Williams, 2006: Observed vegetation–climate feedbacks in the United States. J. Climate, 19, 763786, https://doi.org/10.1175/JCLI3657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., Y. Wang, Z. Liu, R. Gallimore, and S. Levis, 2008: Combined statistical and dynamical assessment of simulated vegetation–rainfall interactions in North Africa during the mid-Holocene. Global Change Biol., 14, 347368, https://doi.org/10.1111/j.1365-2486.2007.01495.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., G. Chen, and Z. Liu, 2011: Vegetation feedbacks to climate in the global monsoon regions. J. Climate, 24, 57405756, https://doi.org/10.1175/2011JCLI4237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., G. Chen, Y. Yu, F. Wang, and A. Tawfik, 2017: Regional climate modeling of vegetation feedbacks on the Asian–Australian monsoon systems. J. Climate, 30, 15531582, https://doi.org/10.1175/JCLI-D-16-0669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, K. L., 1996: Tropical deforestation and climate change. Prog. Phys. Geogr., 20, 311335, https://doi.org/10.1177/030913339602000304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and et al. , 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 266 pp.

  • Pielke, R. A., Sr., R. Avissar, M. Raupach, A. J. Dolman, X. Zeng, and A. S. Denning, 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biol., 4, 461475, https://doi.org/10.1046/j.1365-2486.1998.t01-1-00176.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, D., and S. L. Thompson, 1995: The effect of doubling stomatal resistance in a global climate model. Global Planet. Change, 10, 129161, https://doi.org/10.1016/0921-8181(94)00023-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., and G. Kukla, 1985: Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere. J. Climate Appl. Meteor., 24, 402411, https://doi.org/10.1175/1520-0450(1985)024<0402:MSAOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., and et al. , 2015: Variability and predictability of West African droughts: A review on the role of sea surface temperature anomalies. J. Climate, 28, 40344060, https://doi.org/10.1175/JCLI-D-14-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roehrig, R., D. Bouniol, F. Guichard, F. Hourdin, and J.-L. Redelsperger, 2013: The present and future of the West African monsoon: A process-oriented assessment of CMIP5 simulations along the AMMS transect. J. Climate, 26, 64716504, https://doi.org/10.1175/JCLI-D-12-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2003: The impact of Mediterranean SSTs on the Sahelian rainfall season. J. Climate, 16, 849862, https://doi.org/10.1175/1520-0442(2003)016<0849:TIOMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., C. D. Peters-Lidard, and S. V. Kumar, 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, https://doi.org/10.1175/JHM-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segele, Z. T., M. B. Richman, L. M. Leslie, and P. J. Lamb, 2015: Seasonal-to-interannual variability of Ethiopia/Horn of Africa monsoon. Part II: Statistical multimodel ensemble rainfall predictions. J. Climate, 28, 35113536, https://doi.org/10.1175/JCLI-D-14-00476.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration on the Earth’s climate. Science, 215, 14981501, https://doi.org/10.1126/science.215.4539.1498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., and et al. , 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). Los Alamos National Laboratory Rep. LAUR-10-01853, http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf.

  • Sud, Y. C., and W. E. Smith, 1985: The influence of surface roughness of deserts on the July circulation. Bound.-Layer Meteor., 33, 1549, https://doi.org/10.1007/BF00137034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., J. Shukla, and Y. Mintz, 1988: Influence of land-surface roughness on atmospheric circulation and precipitation: A sensitivity study with a general circulation model. J. Appl. Meteor., 27, 10361054, https://doi.org/10.1175/1520-0450(1988)027<1036:IOLSRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., and G. Wang, 2012: The complexity of using a feedback parameter to quantify the soil moisture-precipitation relationship. J. Geophys. Res., 117, D11113, https://doi.org/10.1029/2011JD017173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., Z. Liu, and M. Notaro, 2013: Extracting the dominant SST modes impacting North America’s observed climate. J. Climate, 26, 54345452, https://doi.org/10.1175/JCLI-D-12-00583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., M. Notaro, Z. Liu, and G. Chen, 2014: Observed local and remote influences of vegetation on the atmosphere across North America using a model-validated statistical technique that first excludes oceanic forcings. J. Climate, 27, 362382, https://doi.org/10.1175/JCLI-D-13-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., Y. Yu, M. Notaro, J. Mao, X. Shi, and Y. Wei, 2017: Advancing a model-validated statistical method for decomposing the key oceanic drivers of regional climate: Focus on North African climate variability in CESM. J. Climate, 27, 362382, https://doi.org/10.1175/JCLI-D-13-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., E. A. B. Eltahir, J. A. Foley, D. Pollard, and S. Levis, 2004: Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS-IBIS atmosphere-biosphere model. Climate Dyn., 22, 625637, https://doi.org/10.1007/s00382-004-0411-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, N., Z. Liu, Q. Y. Liu, and C. Frankignoul, 2010: Observed atmospheric responses to global SST variability modes: A unified assessment using GEFA. J. Climate, 23, 17391759, https://doi.org/10.1175/2009JCLI3027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, N., Z. Liu, and Q. Y. Liu, 2013: Observational assessment of nonlocal heat flux feedback in the North Atlantic by GEFA. J. Appl. Meteor. Climatol., 52, 645653, https://doi.org/10.1175/JAMC-D-11-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wonnacott, T. H., and R. J. Wonnacott, 1972: Introductory Statistics. Wiley, 622 pp.

  • Yin, L., R. Fu, Y. F. Zhang, P. A. Arias, D. N. Fernando, W. Li, K. Fernandes, and A. R. Bowerman, 2014: What controls the interannual variation of the wet season onsets over the Amazon? J. Geophys. Res. Atmos., 119, 23142328, https://doi.org/10.1002/2013JD021349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., M. Notaro, Z. Liu, F. Wang, F. Alkolibi, E. Fadda, and F. Bakhrjy, 2015: Climatic controls of the interannual to decadal variability in Saudi Arabian dust activity: Toward the development of a seasonal prediction model. J. Geophys. Res. Atmos., 120, 17391758, https://doi.org/10.1002/2014JD022611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., M. Notaro, F. Wang, J. Mao, X. Shi, and Y. Wei, 2017: Observed vegetation-climate feedbacks in the Sahel: Is the classic albedo feedback mechanism truly dominant? Nat. Commun., 8, 1873, https://doi.org/10.1038/s41467-017-02021-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, K.-M. Lau, and C. J. Tucker, 1999: Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science, 286, 15371540, https://doi.org/10.1126/science.286.5444.1537.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 144 18
PDF Downloads 123 123 11

Validation of a Statistical Methodology for Extracting Vegetation Feedbacks: Focus on North African Ecosystems in the Community Earth System Model

View More View Less
  • 1 Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin, and Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin
  • | 3 Environmental Sciences Division, and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee
© Get Permissions
Restricted access

Abstract

Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated here using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportant forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0220.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Yu, yan.yu@jpl.nasa.gov

Abstract

Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated here using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportant forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0220.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Yu, yan.yu@jpl.nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 835.64 KB)
Save