• Amenu, G. G., P. Kumar, and X. Z. Liang, 2005: Interannual variability of deep-layer hydrologic memory and mechanisms of its influence on surface energy fluxes. J. Climate, 18, 50245045, https://doi.org/10.1175/JCLI3590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argentini, S., A. Viola, A. Sempreviva, and I. Petenko, 2005: Summer boundary-layer height at the plateau site of Dome’C, Antarctica. Bound.-Layer Meteor., 115, 409422, https://doi.org/10.1007/s10546-004-5643-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asimakopoulos, D., C. Helmis, and J. Michopoulos, 2004: Evaluation of SODAR methods for the determination of the atmospheric boundary layer mixing height. Meteor. Atmos. Phys., 85, 8592, https://doi.org/10.1007/s00703-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225, https://doi.org/10.1029/95JD02135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., A. B. Tawfik, and R. L. Desjardins, 2017: Revisiting hydrometeorology using cloud and climate observations. J. Hydrometeor., 18, 939955, https://doi.org/10.1175/JHM-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beyrich, F., 1997: Mixing height estimation from sodar data—A critical discussion. Atmos. Environ., 31, 39413953, https://doi.org/10.1016/S1352-2310(97)00231-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bian, J., H. Chen, H. Vömel, Y. Duan, Y. Xuan, and D. , 2011: Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH. Adv. Atmos. Sci., 28, 139146, https://doi.org/10.1007/s00376-010-9170-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blay-Carreras, E., and et al. , 2014: Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer. Atmos. Chem. Phys., 14, 45154530, https://doi.org/10.5194/acp-14-4515-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. M., and R. Wood, 2013: The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data. J. Geophys. Res. Atmos., 118, 12 42212 434, https://doi.org/10.1002/2013JD020147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze, 1997: Diurnal variation and life‐cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, https://doi.org/10.1002/qj.49712353806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coulter, R. L., 1979: A comparison of three methods for measuring mixing-layer height. J. Appl. Meteor., 18, 14951499, https://doi.org/10.1175/1520-0450(1979)018<1495:ACOTMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dandou, A., M. Tombrou, K. Schäfer, S. Emeis, A. P. Protonotariou, E. Bossioli, N. Soulakellis, and P. Suppan, 2009: A comparison between modelled and measured mixing-layer height over Munich. Bound.-Layer Meteor., 131, 425440, https://doi.org/10.1007/s10546-009-9373-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davy, R., and I. Esau, 2016: Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nat. Commun., 7, 11690, https://doi.org/10.1038/ncomms11690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Z. Wang, M. J. Mbuh, and H. E. Norton, 2014: Intensified land surface control on boundary layer growth in a changing climate. Geophys. Res. Lett., 41, 12901294, https://doi.org/10.1002/2013GL058826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism. Part I: Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and C. Gong, 1996: Dynamics of wet and dry years in West Africa. J. Climate, 9, 10301042, https://doi.org/10.1175/1520-0442(1996)009<1030:DOWADY>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eresmaa, N., A. Karppinen, S. Joffre, J. Räsänen, and H. Talvitie, 2006: Mixing height determination by ceilometer. Atmos. Chem. Phys., 6, 14851493, https://doi.org/10.5194/acp-6-1485-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esau, I., and S. Zilitinkevich, 2010: On the role of the planetary boundary layer depth in the climate system. Adv. Sci. Res., 4, 63, https://doi.org/10.5194/asr-4-63-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, J., S. Mason, and C. Jakob, 2016: The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. J. Climate, 29, 19992014, https://doi.org/10.1175/JCLI-D-15-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedman, J. M., D. R. Fitzjarrald, K. E. Moore, and R. K. Sakai, 2001: Boundary layer clouds and vegetation–atmosphere feedbacks. J. Climate, 14, 180197, https://doi.org/10.1175/1520-0442(2001)013<0180:BLCAVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., J. H. Marsham, and D. V. Spracklen, 2017: Observations of increased cloud cover over irrigated agriculture in an arid environment. J. Hydrometeor., 18, 21612172, https://doi.org/10.1175/JHM-D-16-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Garratt, J. R., 1994: Review: The atmospheric boundary layer. Earth-Sci. Rev., 37, 89134, https://doi.org/10.1016/0012-8252(94)90026-4.

  • Garreaud, R., and R. C. Muñoz, 2005: The low-level jet off the west coast of subtropical South America: Structure and variability. Mon. Wea. Rev., 133, 22462261, https://doi.org/10.1175/MWR2972.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., and et al. , 2009: Correlation between PM concentrations and aerosol optical depth in eastern China. Atmos. Environ., 43, 58765886, https://doi.org/10.1016/j.atmosenv.2009.08.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., X. Zhang, Y. Wu, Y. Zhaxi, H. Che, B. La, W. Wang, and X. Li, 2011: Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980–2008. Atmos. Environ., 45, 68026811, https://doi.org/10.1016/j.atmosenv.2011.03.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., J. He, H. Liu, Y. Miao, H. Liu, and P. Zhai, 2016a: Impact of various emission control schemes on air quality using WRF-Chem during APEC China 2014. Atmos. Environ., 140, 311319, https://doi.org/10.1016/j.atmosenv.2016.05.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., and et al. , 2016b: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys., 16, 13 30913 319, https://doi.org/10.5194/acp-16-13309-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., and et al. , 2016c: Three-dimensional structure of aerosol in China: A perspective from multi-satellite observations. Atmos. Res., 178–179, 580589, https://doi.org/10.1016/j.atmosres.2016.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennemuth, B., and A. Lammert, 2006: Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Bound.-Layer Meteor., 120, 181200, https://doi.org/10.1007/s10546-005-9035-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, E., I. Koren, O. Altaratz, Z. Levin, and E. Agassi, 2017: Enhanced humidity pockets originating in the mid boundary layer as a mechanism of cloud formation below the lifting condensation level. Environ. Res. Lett., 12, 024020, https://doi.org/10.1088/1748-9326/aa5ba4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schar, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, https://doi.org/10.1175/2009JCLI2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzworth, G. C., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235242, https://doi.org/10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoover, J. D., D. R. Stauffer, S. J. Richardson, L. Mahrt, B. J. Gaudet, and A. Suarez, 2015: Submeso motions within the stable boundary layer and their relationships to local indicators and synoptic regime in moderately complex terrain. J. Appl. Meteor. Climatol., 54, 352369, https://doi.org/10.1175/JAMC-D-14-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X., G. Nielsen, W. John, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., Q. Fu, J. Su, Q. Tang, P. Minnis, Y. Hu, Y. Yi, and Q. Zhao, 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 40114021, https://doi.org/10.5194/acp-9-4011-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., and R. A. Anthes, 1982: The influence of planetary boundary layer physics on frontal structure in the Hoskins-Bretherton horizontal shear model. J. Atmos. Sci., 39, 17831802, https://doi.org/10.1175/1520-0469(1982)039<1783:TIOPBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lammert, A., and J. Bösenberg, 2006: Determination of the convective boundary-layer height with laser remote sensing. Bound.-Layer Meteor., 119, 159170, https://doi.org/10.1007/s10546-005-9020-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and et al. , 2017: Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev., nwx117, https://doi.org/10.1093/nsr/nwx117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., Y. Wang, R. Zhang, and Y. Liu, 2016: Response of boundary layer clouds to continental pollution during the RACORO campaign. J. Atmos. Sci., 73, 36813700, https://doi.org/10.1175/JAS-D-15-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. Huang, B. Chen, T. Zhou, H. Yan, H. Jin, Z. Huang, and B. Zhang, 2015: Comparisons of PBL heights derived from CALIPSO and ECMWF reanalysis data over China. J. Quant. Spectrosc. Radiat. Transfer, 153, 102112, https://doi.org/10.1016/j.jqsrt.2014.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., and X.-Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, https://doi.org/10.1175/2010JCLI3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., X. Yue, F. Hu, and H. Liu, 2004: Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to simulate the interaction between land surface processes and atmospheric boundary layer in semi-arid regions. Adv. Atmos. Sci., 21, 245259, https://doi.org/10.1007/BF02915711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., W. Yao, and B. Huang, 2011: Comparison of temperature and geopotential height records between 59 type and L-band radiosonde systems. J. Appl. Meteor. Sci., 22, 336345.

    • Search Google Scholar
    • Export Citation
  • Mao, M., W. Jiang, J. Gu, C. Xie, and J. Zhou, 2009: Study on the mixed layer, entrainment zone, and cloud feedback based on lidar exploration of Nanjing city. Geophys. Res. Lett., 36, L04808, https://doi.org/10.1029/2008GL036768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCumber, M. C., and R. A. Pielke, 1981: Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model: 1. Soil layer. J. Geophys. Res., 86, 99299938, https://doi.org/10.1029/JC086iC10p09929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGrath-Spangler, E. L., and A. S. Denning, 2012: Estimates of North American summertime planetary boundary layer depths derived from space-borne lidar. J. Geophys. Res., 117, D15101, https://doi.org/10.1029/2012JD017615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medeiros, B., A. Hall, and B. Stevens, 2005: What controls the mean depth of the PBL? J. Climate, 18, 31573172, https://doi.org/10.1175/JCLI3417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Y., X. Hu, S. Liu, T. Qian, M. Xue, Y. Zheng, and S. Wang, 2015a: Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality. J. Adv. Model. Earth Syst., 7, 16021626, https://doi.org/10.1002/2015MS000522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Y., S. Liu, Y. Zheng, S. Wang, Z. Liu, and B. Zhang, 2015b: Numerical study of the effects of planetary boundary layer structure on the pollutant dispersion within built-up areas. J. Environ. Sci., 32, 168179, https://doi.org/10.1016/j.jes.2014.10.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Y., J. Guo, S. Liu, H. Liu, Z. Li, W. Zhang, and P. Zhai, 2017: Classification of summertime synoptic patterns in Beijing and their association with boundary layer structure affecting aerosol pollution. Atmos. Chem. Phys., 17, 30973110, https://doi.org/10.5194/acp-17-3097-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 2002: Boundary Layer Climates. Routledge, 435 pp.

  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14, 12271242, https://doi.org/10.1175/1520-0442(2001)014<1227:PRSMCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48, 21412158, https://doi.org/10.1175/1520-0469(1991)048<2141:SCFITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and et al. , 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, https://doi.org/10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rihani, J. F., F. K. Chow, and R. M. Maxwell, 2015: Isolating effects of terrain and soil moisture heterogeneity on the atmospheric boundary layer: Idealized simulations to diagnose land-atmosphere feedbacks. J. Adv. Model. Earth Syst., 7, 915937, https://doi.org/10.1002/2014MS000371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and et al. , 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Mejia, Z. M., and S. A. Papuga, 2014: Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland. Water Resour. Res., 50, 306317, https://doi.org/10.1002/2013WR014135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandip, P., and H. Martial, 2015: Forcing mechanisms governing diurnal, seasonal, and interannual variability in the boundary layer depths: Five years of continuous lidar observations over a suburban site near Paris. J. Geophys. Res. Atmos., 120, 11 93611 956, https://doi.org/10.1002/2015JD023268.

    • Search Google Scholar
    • Export Citation
  • Sawyer, V., and Z. Li, 2013: Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer. Atmos. Environ., 79, 518528, https://doi.org/10.1016/j.atmosenv.2013.07.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seibert, P., 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, https://doi.org/10.1016/S1352-2310(99)00349-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, https://doi.org/10.1029/2009JD013680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Y. Zhang, A. Beljaars, J. C. Golaz, A. R. Jacobson, and B. Medeiros, 2012: Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res., 117, D17106, https://doi.org/10.1029/2012JD018143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J. L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, https://doi.org/10.1038/nature12829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivaraman, C., S. McFarlane, E. Chapman, M. Jensen, T. Toto, S. Liu, and M. Fischer, 2013: Planetary boundary layer (PBL) height value added product (VAP): Radiosonde retrievals. U.S. Department of Energy Rep. DOE/SC-ARM-TR-132, 36 pp., https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-132.pdf.

  • Solomon, A., M. D. Shupe, and N. B. Miller, 2017: Cloud–atmospheric boundary layer–surface interactions on the Greenland Ice Sheet during the July 2012 extreme melt event. J. Climate, 30, 32373252, https://doi.org/10.1175/JCLI-D-16-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steyn, D. G., M. Baldi, and R. Hoff, 1999: The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J. Atmos. Oceanic Technol., 16, 953959, https://doi.org/10.1175/1520-0426(1999)016<0953:TDOMLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, 670 pp.

    • Crossref
    • Export Citation
  • Sun, J., and et al. , 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105, 199219, https://doi.org/10.1023/A:1019969131774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., X. Zhu, B. Hu, J. Xin, L. Wang, C. Münkel, G. Mao, and Y. Wang, 2015: Impact of emission controls on air quality in Beijing during APEC 2014: Lidar ceilometer observations. Atmos. Chem. Phys., 15, 12 66712 680, https://doi.org/10.5194/acp-15-12667-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., and et al. , 2016: Mixing layer height and its implications for air pollution over Beijing. Atmos. Chem. Phys., 16, 24592475, https://doi.org/10.5194/acp-16-2459-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., X. Chen, and J. Gong, 2006: Error analyses for temperature of L band radiosonde. Meteor. Mon., 32, 4651.

  • Tokinaga, H., and et al. , 2006: Atmospheric sounding over the winter Kuroshio Extension: Effect of surface stability on atmospheric boundary layer structure. Geophys. Res. Lett., 33, L04703, https://doi.org/10.1029/2005GL025102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelezang, D., and A. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245269, https://doi.org/10.1007/BF02430331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and K. Wang, 2014: Estimation of atmospheric mixing layer height from radiosonde data. Atmos. Meas. Tech., 7, 17011709, https://doi.org/10.5194/amt-7-1701-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and K. Wang, 2016: Homogenized variability of radiosonde-derived atmospheric boundary layer height over the global land surface from 1973 to 2014. J. Climate, 29, 68936908, https://doi.org/10.1175/JCLI-D-15-0766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., S. Argentini, and A. Boone, 1996: Role of land surface in controlling daytime cloud amount: Two case studies in the GCIP-SW area. J. Geophys. Res., 101, 73597370, https://doi.org/10.1029/95JD02134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32, 16691682, https://doi.org/10.1175/1520-0450(1993)032<1669:TRBOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, Y., Z. Zhang, Y. Cao, Y. Li, H. Wang, X. Li, and S. Ma, 2009: Experiment and analysis of GPS radiosonde RS92 performance. Meteor. Sci. Technol., 37, 336340.

    • Search Google Scholar
    • Export Citation
  • Xu, W., Y. Guo, B. Huang, and S. Gu, 2007: Analysis of GTS radiosonde humidity sensor testing data and correction of upper-air relative humidity radiosonde data. Meteor. Sci. Technol., 35, 423428.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., and et al. , 2015: Spatial and temporal variability of aerosol vertical distribution based on lidar observations: A haze case study over Jinhua basin. Adv. Meteor., 2015, 349592, https://doi.org/10.1155/2015/349592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., J. Guo, Y. Miao, H. Liu, Y. Zhang, Z. Li, and P. Zhai, 2016: Planetary boundary layer height from CALIOP compared to radiosonde over China. Atmos. Chem. Phys., 16, 99519963, https://doi.org/10.5194/acp-16-9951-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. J. Seidel, J. C. Golaz, C. Deser, and R. A. Tomas, 2011: Climatological characteristics of Arctic and Antarctic surface-based inversions. J. Climate, 24, 51675186, https://doi.org/10.1175/2011JCLI4004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. J. Seidel, and S. Zhang, 2013: Trends in planetary boundary layer height over Europe. J. Climate, 26, 10 07110 076, https://doi.org/10.1175/JCLI-D-13-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Zhang, C. Huang, K. Huang, Y. Gong, and Q. Gan, 2014: Diurnal variations of the planetary boundary layer height estimated from intensive radiosonde observations over Yichang, China. Sci. China Technol. Sci., 57, 21722176, https://doi.org/10.1007/s11431-014-5639-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and et al. , 2018: The climatology of cloud-base height from long-term radiosonde measurements in China. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-017-7096-0, in press.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and B. Geerts, 2013: The influence of soil moisture on the planetary boundary layer and on cumulus convection over an isolated mountain. Part I: Observations. Mon. Wea. Rev., 141, 10611078, https://doi.org/10.1175/MWR-D-12-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 192 192 37
PDF Downloads 161 161 28

On the Summertime Planetary Boundary Layer with Different Thermodynamic Stability in China: A Radiosonde Perspective

View More View Less
  • 1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 2 State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing, China
  • | 3 Public Meteorological Service Center, China Meteorological Administration, Beijing, China
  • | 4 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Strongly influenced by thermodynamic stability, the planetary boundary layer (PBL) is key to the exchange of heat, momentum, and moisture between the ground surface and free troposphere. The PBL with different thermodynamic stability across the whole of China, however, is not yet well understood. In this study, the occurrence frequency and spatial distribution of the convective boundary layer (CBL), neutral boundary layer (NBL), and stable boundary layer (SBL) were systematically investigated, based on intensive summertime soundings launched at 1400 Beijing time (BJT) throughout China’s radiosonde network (CRN) for the period 2012 to 2016. Overall, the occurrences of CBL, NBL, and SBL account for 70%, 26%, and 4%, respectively, suggesting that CBL dominates in summer throughout China. In terms of the spatial pattern of PBL height, a prominent north–south gradient can be found with higher PBL height in northwest China. In addition, the PBL heights of CBL and NBL were found to be positively (negatively) associated with near-surface air temperature (humidity), whereas no apparent relationship was found for SBL. Furthermore, clouds tend to reduce the occurrence frequency, irrespective of PBL type. Roughly 70% of SBL cases occur under overcast conditions, much higher than those for NBL and CBL, indicating that clouds govern to some extent the occurrence of SBL. In contrast, except for the discernible changes in PBL height under overcast conditions relative to those under clear-sky conditions, the changes in PBL height under partly cloudy conditions are no more than 170 m for both NBL and CBL types.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0231.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Guo, jpguocams@gmail.com; Panmao Zhai, pmzhai@cma.gov.cn

Abstract

Strongly influenced by thermodynamic stability, the planetary boundary layer (PBL) is key to the exchange of heat, momentum, and moisture between the ground surface and free troposphere. The PBL with different thermodynamic stability across the whole of China, however, is not yet well understood. In this study, the occurrence frequency and spatial distribution of the convective boundary layer (CBL), neutral boundary layer (NBL), and stable boundary layer (SBL) were systematically investigated, based on intensive summertime soundings launched at 1400 Beijing time (BJT) throughout China’s radiosonde network (CRN) for the period 2012 to 2016. Overall, the occurrences of CBL, NBL, and SBL account for 70%, 26%, and 4%, respectively, suggesting that CBL dominates in summer throughout China. In terms of the spatial pattern of PBL height, a prominent north–south gradient can be found with higher PBL height in northwest China. In addition, the PBL heights of CBL and NBL were found to be positively (negatively) associated with near-surface air temperature (humidity), whereas no apparent relationship was found for SBL. Furthermore, clouds tend to reduce the occurrence frequency, irrespective of PBL type. Roughly 70% of SBL cases occur under overcast conditions, much higher than those for NBL and CBL, indicating that clouds govern to some extent the occurrence of SBL. In contrast, except for the discernible changes in PBL height under overcast conditions relative to those under clear-sky conditions, the changes in PBL height under partly cloudy conditions are no more than 170 m for both NBL and CBL types.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0231.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Guo, jpguocams@gmail.com; Panmao Zhai, pmzhai@cma.gov.cn

Supplementary Materials

    • Supplemental Materials (DOCX 2.76 MB)
Save