• Alexander, L., and S. Perkins, 2013: Debate heating up over changes in climate variability. Environ. Res. Lett., 8, 041001, https://doi.org/10.1088/1748-9326/8/4/041001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and et al. , 2015: MERRA-2: Initial evaluation of the climate. Technical Report Series on Global Modeling and Data Assimilation, Vol. 43, NASA Tech. Rep. NASA/TM-2015-104606, 139 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Brown, S. J., J. Caesar, and C. A. T. Ferro, 2008: Global changes in extreme daily temperature since 1950. J. Geophys. Res., 113, D05115, https://doi.org/10.1029/2006JD008091.

    • Search Google Scholar
    • Export Citation
  • Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res. Atmos., 111, D05101, https://doi.org/10.1029/2005JD006280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., P. A. Stott, and S. J. Brown, 2011: The role of human activity in the recent warming of extremely warm daytime temperatures. J. Climate, 24, 19221930, https://doi.org/10.1175/2011JCLI4150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics, Springer, 208 pp.

    • Crossref
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Coumou, D., and A. Robinson, 2013: Historic and future increases in the global land area affected by monthly heat extremes. Environ. Res. Lett., 8, 034018, https://doi.org/10.1088/1748-9326/8/3/034018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Director, H., and L. Bornn, 2015: Connecting point-level and gridded moments in the analysis of climate data. J. Climate, 28, 34963510, https://doi.org/10.1175/JCLI-D-14-00571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and L. V. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett., 39, L14707, https://doi.org/10.1029/2012GL052459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and et al. , 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, https://doi.org/10.1002/jgrd.50150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., J. Sillmann, S. Wild, L. V. Alexander, T. Lippmann, and F. W. Zwiers, 2014: Consistency of temperature and precipitation extremes across various global gridded in situ and reanalysis dataset. J. Climate, 27, 50195035, https://doi.org/10.1175/JCLI-D-13-00405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., L. V. Alexander, N. Herold, and A. J. Dittus, 2016: Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations. J. Geophys. Res. Atmos., 121, 11 17411 189, https://doi.org/10.1002/2016JD025480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, R. J. H., M. G. Donat, and L. V. Alexander, 2014: Investigating uncertainties in global gridded datasets of climate extremes. Climate Past, 10, 21712199, https://doi.org/10.5194/cp-10-2171-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., and R. W. Katz, 2011: New software to analyze how extremes change over time. Eos, Trans. Amer. Geophys. Union, 92, 1320, https://doi.org/10.1029/2011EO020001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, https://doi.org/10.1073/pnas.1205276109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntingford, C., P. D. Jones, V. N. Livina, T. M. Lenton, and P. M. Cox, 2013: No increase in global temperature variability despite changing regional patterns. Nature, 500, 327330, https://doi.org/10.1038/nature12310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Summary for policymakers. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 3–21.

  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210, https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Abisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and B. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21, 289302, https://doi.org/10.1007/BF00139728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., P. F. Craigmile, P. Guttorp, M. Haran, B. Sansó, and M. L. Stein, 2013: Uncertainty analysis in climate change assessments. Nat. Climate Change, 3, 769771, https://doi.org/10.1038/nclimate1980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Charles Griffin, 272 pp.

  • Kharin, V. V., and F. W. Zwiers, 2005: Estimating extremes in transient climate change simulations. J. Climate, 18, 11561173, https://doi.org/10.1175/JCLI3320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, https://doi.org/10.1175/JCLI4066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, https://doi.org/10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and et al. , 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., F. W. Zwiers, and X. Zhang, 2009: Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. WMO, WCDMP-72, WMO-TD 1500, 56 pp., www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf.

  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and et al. , 2015: Surface temperature probability distributions in the NARCCAP hindcast experiment: Evaluation methodology, metrics, and results. J. Climate, 28, 978997, https://doi.org/10.1175/JCLI-D-13-00457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKinnon, K. A., A. Rhines, M. P. Tingley, and P. Huybers, 2016: The changing shape of Northern Hemisphere summer temperature distributions. J. Geophys. Res. Atmos., 121, 88498868, https://doi.org/10.1002/2016JD025292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., R. W. Katz, and S. H. Schneider, 1984: Extreme high temperature events: Changes in their probabilities with changes in mean temperature. J. Climate Appl. Meteor., 23, 16011613, https://doi.org/10.1175/1520-0450(1984)023<1601:EHTECI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCAR, 2016: The climate data guide: NCEP Reanalysis (R2). Accessed 26 October 2016, https://climatedataguide.ucar.edu/climate-data/ncep-reanalysis-r2.

  • Rahmstorf, S., and D. Coumou, 2011: Increase in extreme events in a warming world. Proc. Natl. Acad. Sci. USA, 108, 17 90517 909, https://doi.org/10.1073/pnas.1101766108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, A., and P. Huybers, 2013: Frequent summer temperature extremes reflect changes in the mean, not the variance. Proc. Natl. Acad. Sci. USA, 110, E546, https://doi.org/10.1073/pnas.1218748110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, A., K. A. McKinnon, M. P. Tingley, and P. Huybers, 2017: Seasonally resolved distributional trends of North American temperatures show contraction of winter variability. J. Climate, 30, 11391157, https://doi.org/10.1175/JCLI-D-16-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robeson, S. M., 2004: Trends in time-varying percentiles of daily minimum and maximum temperature over North America. Geophys. Res. Lett., 31, L04203, https://doi.org/10.1029/2003GL019019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez-Lugo, A., C. Morice, and P. Berrisford, 2016: Surface temperature [in “State of the Climate in 2015”]. Bull. Amer. Meteor. Soc., 97 (8), S12S13.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2015: Need for caution in interpreting extreme weather statistics. J. Climate, 28, 91669187, https://doi.org/10.1175/JCLI-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, https://doi.org/10.1038/nclimate2268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., M. G. Donat, A. J. Pitman, R. Knutti, and R. L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477483, https://doi.org/10.1038/nature16542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM National Conference, ACM Publ. P-68, Brandon/Systems Press, 517–524.

    • Crossref
    • Export Citation
  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, https://doi.org/10.1002/jgrd.50203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and et al. , 2004: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analysis of surface air temperature. J. Geophys. Res., 109, D24115, https://doi.org/10.1029/2004JD005306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., P. Berrisford, D. P. Dee, H. Hersbach, S. Hirahara, and J.-N. Thépaut, 2017: A reassessment of temperature variations and trends from global reanalyses and monthly surface climatological datasets. Quart. J. Roy. Meteor. Soc., 143, 101119, https://doi.org/10.1002/qj.2949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simolo, C., M. Brunetti, M. Maugeri, T. Nanni, and A. Speranza, 2010: Understanding climate change–induced variations in daily temperature distributions over Italy. J. Geophys. Res., 115, D22110, https://doi.org/10.1029/2010JD014088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R., E. Suckling, and E. Hawkins, 2016: What does global mean temperature tell us about local climate? Philos. Trans. Roy. Soc., 373A, 20140426, https://doi.org/10.1098/rsta.2014.0426.

    • Search Google Scholar
    • Export Citation
  • Tingley, M., and P. Huybers, 2013: Recent temperature extremes at high northern latitudes unprecedented in the past 600 years. Nature, 496, 201205, https://doi.org/10.1038/nature11969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and et al. , 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 125 29
PDF Downloads 80 80 22

The Sensitivity of Daily Temperature Variability and Extremes to Dataset Choice

View More View Less
  • 1 Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia
  • | 2 School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
© Get Permissions
Restricted access

Abstract

Robust conclusions regarding changes in the temperature distribution rely on the accuracy and reliability of the input datasets used. Differences between methodologies and datasets in previous studies add uncertainty when comparing and quantifying findings. Here, the authors investigate the sensitivity of assessing global and regional temperature variability and extremes over 1980–2014 in gridded datasets of daily temperature anomalies. A gridded in situ–based dataset, Hadley Centre Global Historical Climatology Network–Daily (HadGHCND), is compared against several commonly used reanalysis products by assessing both the entire distribution and the tails of the distribution. Empirical probability distribution functions show sensitivity to the input dataset when estimating aspects such as standard deviation and skewness, with the mean showing robust results for most regions, irrespective of dataset choice. Standard deviation is especially sensitive, with larger disagreements between datasets for some regions more than others, such as Africa and the Mediterranean region, and with larger differences in minimum temperatures compared with maximum temperatures. Estimates of extreme parameters also show sensitivity to dataset choice, particularly in the lower tails and for daily minimum temperature anomalies. Comparing changes in the means and the extremes of the temperature distributions, the cold extremes in the lower tails have been warming at a faster rate than the mean of the entire distribution for much of the Northern Hemisphere extratropics, with warm extremes warming at a faster rate than the mean in some subtropical regions. These documented sensitivities call for caution when assessing changes in temperature variability and extremes, as dataset choice can have substantial effects on results.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0243.s1.

Corresponding author: Mia H. Gross, mia.gross@unsw.edu.au

Abstract

Robust conclusions regarding changes in the temperature distribution rely on the accuracy and reliability of the input datasets used. Differences between methodologies and datasets in previous studies add uncertainty when comparing and quantifying findings. Here, the authors investigate the sensitivity of assessing global and regional temperature variability and extremes over 1980–2014 in gridded datasets of daily temperature anomalies. A gridded in situ–based dataset, Hadley Centre Global Historical Climatology Network–Daily (HadGHCND), is compared against several commonly used reanalysis products by assessing both the entire distribution and the tails of the distribution. Empirical probability distribution functions show sensitivity to the input dataset when estimating aspects such as standard deviation and skewness, with the mean showing robust results for most regions, irrespective of dataset choice. Standard deviation is especially sensitive, with larger disagreements between datasets for some regions more than others, such as Africa and the Mediterranean region, and with larger differences in minimum temperatures compared with maximum temperatures. Estimates of extreme parameters also show sensitivity to dataset choice, particularly in the lower tails and for daily minimum temperature anomalies. Comparing changes in the means and the extremes of the temperature distributions, the cold extremes in the lower tails have been warming at a faster rate than the mean of the entire distribution for much of the Northern Hemisphere extratropics, with warm extremes warming at a faster rate than the mean in some subtropical regions. These documented sensitivities call for caution when assessing changes in temperature variability and extremes, as dataset choice can have substantial effects on results.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0243.s1.

Corresponding author: Mia H. Gross, mia.gross@unsw.edu.au

Supplementary Materials

    • Supplemental Materials (ZIP 5.53 MB)
Save