On the Reduced North Atlantic Storminess during the Last Glacial Period: The Role of Topography in Shaping Synoptic Eddies

Gwendal Rivière LMD/IPSL, Département de Géosciences, ENS, PSL Research University, École Polytechnique, Université Paris Saclay, Sorbonne Universités, UPMC Paris 06, CNRS, Paris, France

Search for other papers by Gwendal Rivière in
Current site
Google Scholar
PubMed
Close
,
Ségolène Berthou Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Ségolène Berthou in
Current site
Google Scholar
PubMed
Close
,
Guillaume Lapeyre LMD/IPSL, Département de Géosciences, ENS, PSL Research University, École Polytechnique, Université Paris Saclay, Sorbonne Universités, UPMC Paris 06, CNRS, Paris, France

Search for other papers by Guillaume Lapeyre in
Current site
Google Scholar
PubMed
Close
, and
Masa Kageyama LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris Saclay, Gif-sur-Yvette, France

Search for other papers by Masa Kageyama in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The North Atlantic storminess of Last Glacial Maximum (LGM) fully coupled climate simulations is generally less intense than that of their preindustrial (PI) counterparts, despite having stronger baroclinicity. An explanation for this counterintuitive result is presented by comparing two simulations of the IPSL full climate model forced by Paleoclimate Modelling Intercomparison Project Phase 3 (PMIP3) LGM and PI conditions. Two additional numerical experiments using a simplified dry general circulation model forced by idealized topography and a relaxation in temperature provide guidance for the dynamical interpretation. The forced experiment with idealized Rockies and an idealized Laurentide Ice Sheet has a less intense North Atlantic storm-track activity than the forced experiment with idealized Rockies only, despite similar baroclinicity. Both the climate and idealized runs satisfy or support the following statements. The reduced storm-track intensity can be explained by a reduced baroclinic conversion, which itself comes from a loss in eddy efficiency to tap the available potential energy as shown by energetic budgets. The eddy heat fluxes are northeastward oriented in the western Atlantic in LGM and are less well aligned with the mean temperature gradient than in PI. The southern slope of the Laurentide Ice Sheet topography forces the eddy geopotential isolines to be zonally oriented at low levels in its proximity. This distorts the tubes of constant eddy geopotential in such a way that they tilt northwestward with height during baroclinic growth in LGM while they are more optimally westward tilted in PI.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gwendal Rivière, griviere@lmd.ens.fr

Abstract

The North Atlantic storminess of Last Glacial Maximum (LGM) fully coupled climate simulations is generally less intense than that of their preindustrial (PI) counterparts, despite having stronger baroclinicity. An explanation for this counterintuitive result is presented by comparing two simulations of the IPSL full climate model forced by Paleoclimate Modelling Intercomparison Project Phase 3 (PMIP3) LGM and PI conditions. Two additional numerical experiments using a simplified dry general circulation model forced by idealized topography and a relaxation in temperature provide guidance for the dynamical interpretation. The forced experiment with idealized Rockies and an idealized Laurentide Ice Sheet has a less intense North Atlantic storm-track activity than the forced experiment with idealized Rockies only, despite similar baroclinicity. Both the climate and idealized runs satisfy or support the following statements. The reduced storm-track intensity can be explained by a reduced baroclinic conversion, which itself comes from a loss in eddy efficiency to tap the available potential energy as shown by energetic budgets. The eddy heat fluxes are northeastward oriented in the western Atlantic in LGM and are less well aligned with the mean temperature gradient than in PI. The southern slope of the Laurentide Ice Sheet topography forces the eddy geopotential isolines to be zonally oriented at low levels in its proximity. This distorts the tubes of constant eddy geopotential in such a way that they tilt northwestward with height during baroclinic growth in LGM while they are more optimally westward tilted in PI.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gwendal Rivière, griviere@lmd.ens.fr
Save
  • Abe-Ouchi, A., and Coauthors, 2015: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci. Model Dev., 8, 36213637, https://doi.org/10.5194/gmd-8-3621-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beghin, P., S. Charbit, M. Kageyama, N. Combourieu-Nebout, C. Hatté, C. Dumas, and J.-Y. Peterschmitt, 2016: What drives LGM precipitation over the western Mediterranean? A study focused on the Iberian Peninsula and northern Morocco. Climate Dyn., 46, 26112631, https://doi.org/10.1007/s00382-015-2720-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, A. L., 1978: Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35, 23622367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053, https://doi.org/10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. P. Harrison, B. Otto-Bliesner, A. Abe-Ouchi, J. Jungclaus, and J.-Y. Peterschmitt, 2011: The Paleoclimate Modeling Intercomparison Project contribution to CMIP5. CLIVAR Exchanges, No. 56, International CLIVAR Project Office, Southampton, United Kingdom, 15–19.

  • Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data. Nat. Climate Change, 2, 417424, https://doi.org/10.1038/nclimate1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. J. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, https://doi.org/10.1175/2009JAS3078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and M. Mak, 1990: On the basic dynamics of regional cyclogenesis. J. Atmos. Sci., 47, 14171442, https://doi.org/10.1175/1520-0469(1990)047<1417:OTBDOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cash, B. A., P. J. Kushner, and G. K. Vallis, 2005: Zonal asymmetries, teleconnections, and annular patterns in a GCM. J. Atmos. Sci., 62, 207219, https://doi.org/10.1175/JAS-3361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and I. M. Held, 1988: Stationary waves of the Ice Age climate. J. Climate, 1, 807819, https://doi.org/10.1175/1520-0442(1988)001<0807:SWOTIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and I. M. Held, 1992: The stationary response to large-scale orography in a general circulation model and a linear model. J. Atmos. Sci., 49, 525539, https://doi.org/10.1175/1520-0469(1992)049<0525:TSRTLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. S. Battisti, 2009: Causes of reduced North Atlantic storm activity in a CAM3 simulation of the Last Glacial Maximum. J. Climate, 22, 47934808, https://doi.org/10.1175/2009JCLI2776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drouard, M., G. Rivière, and P. Arbogast, 2015: The link between the North Pacific climate variability and the North Atlantic Oscillation via downstream propagation of synoptic waves. J. Climate, 28, 39573976, https://doi.org/10.1175/JCLI-D-14-00552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 60912 646, https://doi.org/10.1029/97JC00480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. Morales Maqueda, 1999: Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Climate Dyn., 15, 251268, https://doi.org/10.1007/s003820050280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., E. Kirk, U. Luksch, and F. Lunkeit, 2005: The Portable University Model of the Atmosphere (PUMA): Storm track dynamics and low-frequency variability. Meteor. Z., 14, 735745, https://doi.org/10.1127/0941-2948/2005/0074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2009: On the zonal structure of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 66, 332352, https://doi.org/10.1175/2008JAS2682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofer, D., C. C. Raible, A. Dehnert, and J. Kuhlemann, 2012a: The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region. Climate Past, 8, 935949, https://doi.org/10.5194/cp-8-935-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofer, D., C. C. Raible, N. Merz, A. Dehnert, and J. Kuhlemann, 2012b: Simulated winter circulation types in the North Atlantic and European region for preindustrial and glacial conditions. Geophys. Res. Lett., 39, L15805, https://doi.org/10.1029/2012GL052296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2013: Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Climate Dyn., 40, 21672192, https://doi.org/10.1007/s00382-012-1411-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inatsu, M., H. Mukougawa, and S.-P. Xie, 2002: Stationary eddy response to surface boundary forcing: Idealized GCM experiments. J. Atmos. Sci., 59, 18981915, https://doi.org/10.1175/1520-0469(2002)059<1898:SERTSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I. N., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44, 37103720, https://doi.org/10.1175/1520-0469(1987)044<3710:SOBIIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I. N., 1994: Introduction to Circulating Atmospheres. Cambridge University Press, 422 pp.

    • Crossref
    • Export Citation
  • Justino, F., A. Timmermann, U. Merkel, and E. P. Souza, 2005: Synoptic reorganization of atmospheric flow during the Last Glacial Maximum. J. Climate, 18, 28262846, https://doi.org/10.1175/JCLI3403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and P. J. Valdes, 2000a: Impact of the North American ice-sheet orography on the Last Glacial Maximum eddies and snowfall. Geophys. Res. Lett., 27, 15151518, https://doi.org/10.1029/1999GL011274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and P. J. Valdes, 2000b: Synoptic-scale perturbations in AGCM simulations of the present and Last Glacial Maximum climates. Climate Dyn., 16, 517533, https://doi.org/10.1007/PL00007923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and Coauthors, 2013a: Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model—Part I: Comparing IPSL_CM5A to IPSL_CM4. Climate Dyn., 40, 24472468, https://doi.org/10.1007/s00382-012-1488-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and Coauthors, 2013b: Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model: Part II: Model–data comparisons. Climate Dyn., 40, 24692495, https://doi.org/10.1007/s00382-012-1499-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 25962613, https://doi.org/10.1175/JAS-D-12-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem. Cycles, 19, GB1015, https://doi.org/10.1029/2003GB002199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laîné, A., and Coauthors, 2009: Northern Hemisphere storm tracks during the Last Glacial Maximum in the PMIP2 ocean–atmosphere coupled models: Energetic study, seasonal cycle, precipitation. Climate Dyn., 32, 593614, https://doi.org/10.1007/s00382-008-0391-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., 2000: Barotropic effects on atmospheric storm tracks. J. Atmos. Sci., 57, 14201435, https://doi.org/10.1175/1520-0469(2000)057<1420:BEOAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-J., and M. Mak, 1996: The role of orography in the dynamics of storm tracks. J. Atmos. Sci., 53, 17371750, https://doi.org/10.1175/1520-0469(1996)053<1737:TROOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and D. S. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21, 35613579, https://doi.org/10.1175/2007JCLI2166.1; Corridendum, 21, 6777, https://doi.org/10.1175/JCLI2811.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löfverström, M., R. Caballero, J. Nilsson, and J. Kleman, 2014: Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle. Climate Past, 10, 14531471, https://doi.org/10.5194/cp-10-1453-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löfverström, M., R. Caballero, J. Nilsson, and G. Messori, 2016: Stationary wave reflection as a mechanism for zonalizing the Atlantic winter jet at the LGM. J. Atmos. Sci., 73, 33293342, https://doi.org/10.1175/JAS-D-15-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1997: OPA version 8.1: Ocean general circulation model reference manual. LODYC/IPSL Tech. Rep. 3, 91 pp.

  • Merz, N., C. C. Raible, and T. Woollings, 2015: North Atlantic eddy-driven jet in interglacial and glacial winter climates. J. Climate, 28, 39773997, https://doi.org/10.1175/JCLI-D-14-00525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngo-Duc, T., K. Laval, J. Polcher, A. Lombard, and A. Cazenave, 2005: Effects of land water storage on global mean sea level over the past half century. Geophys. Res. Lett., 32, L09704, https://doi.org/10.1029/2005GL022719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngo-Duc, T., K. Laval, G. Ramillien, J. Polcher, and A. Cazenave, 2007: Validation of the land water storage simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data. Water Resour. Res., 43, W04427, https://doi.org/10.1029/2006WR004941.

    • Crossref
    • Export Citation
  • Park, H.-S., J. C. H. Chiang, and S.-W. Son, 2010: The role of the central Asian mountains on the midwinter suppression of North Pacific storminess. J. Atmos. Sci., 67, 37063720, https://doi.org/10.1175/2010JAS3349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., C. Li, J. J. Wettstein, M. Kageyama, and K. H. Nisancioglu, 2011: The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period. Climate Past, 7, 10891101, https://doi.org/10.5194/cp-7-1089-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149, https://doi.org/10.1146/annurev.earth.32.082503.144359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., and K. H. Cook, 1997: Factors controlling nonlinearity in mechanically forced stationary waves over orography. J. Atmos. Sci., 54, 26122629, https://doi.org/10.1175/1520-0469(1997)054<2612:FCNIMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2008: Barotropic regeneration of upper-level synoptic disturbances in different configurations of the zonal weather regime. J. Atmos. Sci., 65, 31593178, https://doi.org/10.1175/2008JAS2603.1; Corridendum, 66, 215, https://doi.org/10.1175/JAS2975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and A. Joly, 2006: Role of the low-frequency deformation field on the explosive growth of extratropical cyclones at the jet exit. Part II: Baroclinic critical region. J. Atmos. Sci., 63, 19821995, https://doi.org/10.1175/JAS3729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241266, https://doi.org/10.1175/JAS3850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., B. L. Hua, and P. Klein, 2004: Perturbation growth in terms of baroclinic alignment properties. Quart. J. Roy. Meteor. Soc., 130, 16551673, https://doi.org/10.1256/qj.02.223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., A. Laîné, G. Lapeyre, D. Salas-Mélia, and M. Kageyama, 2010: Links between Rossby wave breaking and the North Atlantic Oscillation–Arctic Oscillation in present-day and Last Glacial Maximum climate simulations. J. Climate, 23, 29873008, https://doi.org/10.1175/2010JCLI3372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., M. Ting, and L. M. Polvani, 2009: The effect of topography on storm-track intensity in a relatively simple general circulation model. J. Atmos. Sci., 66, 393411, https://doi.org/10.1175/2008JAS2742.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullman, D. J., A. N. LeGrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi, 2014: Assessing the impact of Laurentide Ice Sheet topography on glacial climate. Climate Past, 10, 487507, https://doi.org/10.5194/cp-10-487-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 697 378 105
PDF Downloads 292 63 9