• Bonfils, C., and B. D. Santer, 2011: Investigating the possibility of a human component in various Pacific decadal oscillation indices. Climate Dyn., 37, 14571468, https://doi.org/10.1007/s00382-010-0920-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. T., Y. Ming, W. Li, and S. A. Hill, 2017: Change in the magnitude and mechanisms of global temperature variability with warming. Nat. Climate Change, 7, 743748, https://doi.org/10.1038/nclimate3381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Chylek, P., M. K. Dubey, N. Hengartner, and J. D. Klett, 2017: Observed and projected precipitation changes over the nine US climate regions. Atmosphere, 8, 207, https://doi.org/10.3390/atmos8110207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, https://doi.org/10.1007/s00382-012-1446-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., J. C. Fyfe, S.-P. Xie, and X. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nat. Climate Change, 5, 555559, https://doi.org/10.1038/nclimate2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, https://doi.org/10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, https://doi.org/10.1175/JCLI-D-13-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. Dai, 2015: The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Climate Dyn., 45, 26672681, https://doi.org/10.1007/s00382-015-2500-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., R. Tomas, S. Stevenson, B. Otto-Bliesner, E. Brady, and E. Wahl, 2017: The amplifying influence of increased ocean stratification on a future year without a summer. Nat. Commun., 8, 1236, https://doi.org/10.1038/s41467-017-01302-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, A. Colman, and R. Washington, 1999: Large-scale modes of ocean surface temperature since the late nineteenth century. Beyond El Niño: Decadal and Interdecadal Climate Variability, A. Navarra, Ed., Springer-Verlag, 73–102.

    • Crossref
    • Export Citation
  • Friedman, A. R., Y.-T. Hwang, J. C. H. Chiang, and D. M. W. Frierson, 2013: Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Climate, 26, 54195433, https://doi.org/10.1175/JCLI-D-12-00525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and et al. , 2014: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dyn., 43, 13571379, https://doi.org/10.1007/s00382-013-1951-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Henley, B. J., M. A. Thyer, G. Kuczera, and S. W. Franks, 2011: Climate-informed stochastic hydrological modeling: Incorporating decadal-scale variability using paleo data. Water Resour. Res., 47, W11509, https://doi.org/10.1029/2010WR010034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, W. Han, J. Yin, B. Wu, and M. Kimoto, 2013: Influence of continental ice retreat on future global climate. J. Climate, 26, 30873111, https://doi.org/10.1175/JCLI-D-12-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci., 9, 669673, https://doi.org/10.1038/ngeo2770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibensperger, E. M., and et al. , 2012: Climatic effects of 1950–2050 changes in US anthropogenic aerosols—Part 2: Climate response. Atmos. Chem. Phys., 12, 33493362, https://doi.org/10.5194/acp-12-3349-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and A. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J. Climate, 19, 16051623, https://doi.org/10.1175/JCLI3675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and B. D. Santer, 2009: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Climate, 22, 780792, https://doi.org/10.1175/2008JCLI2552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, https://doi.org/10.1038/nclimate1229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2013: Climate change projections in CESM1(CAM5) compared to CCSM4. J. Climate, 26, 62876308, https://doi.org/10.1175/JCLI-D-12-00572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and C. T. Y. Chung, 2015: Disappearance of the southeast U.S. “warming hole” with the late 1990s transition of the interdecadal Pacific oscillation. Geophys. Res. Lett., 42, 55645570, https://doi.org/10.1002/2015GL064586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and H. Teng, 2016a: Initialized decadal prediction for transition to positive phase of the interdecadal Pacific oscillation. Nat. Commun., 7, 11718, https://doi.org/10.1038/ncomms11718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, B. D. Santer, and S.-P. Xie, 2016b: Contribution of the interdecadal Pacific oscillation to twentieth-century global surface temperature trends. Nat. Climate Change, 6, 10051008, https://doi.org/10.1038/nclimate3107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and et al. , 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, https://doi.org/10.1029/2007JD008411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., W. R. Boos, S. Bordoni, T. L. Delworth, S. B. Kapnick, H. Murakami, G. A. Vecchi, and W. Zhang, 2017: Weakening of the North American monsoon with global warming. Nat. Climate Change, 7, 806812, https://doi.org/10.1038/nclimate3412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, A. S., C. Deser, and J. Fasullo, 2014: Evaluating modes of variability in climate models. Eos, Trans. Amer. Geophys. Union, 95, 453455, https://doi.org/10.1002/2014EO490002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, 2017: Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere, 8, 52, https://doi.org/10.3390/atmos8030052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., and Y. Ding, 2016: Oceanic forcings of the interdecadal variability in East Asian summer rainfall. J. Climate, 29, 76337649, https://doi.org/10.1175/JCLI-D-15-0792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., and A. Hu, 2017: Internally generated and externally forced multidecadal oceanic modes and their influence on the summer rainfall over East Asia. J. Climate, 30, 82998316, https://doi.org/10.1175/JCLI-D-17-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and V. Ramanathan, 2012: Latitudinally asymmetric response of global surface temperature: Implications for regional climate change. Geophys. Res. Lett., 39, L13706, https://doi.org/10.1029/2012GL052116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., B. Wang, W. Qian, and B. Zhang, 2012: Recent weakening of northern East Asian summer monsoon: A possible response to global warming. Geophys. Res. Lett., 39, L09701, https://doi.org/10.1029/2012GL051155.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 100 22
PDF Downloads 70 70 17

How Would the Twenty-First-Century Warming Influence Pacific Decadal Variability and Its Connection to North American Rainfall: Assessment Based on a Revised Procedure for the IPO/PDO

View More View Less
  • 1 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 2 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Decadal climate variability of sea surface temperature (SST) over the Pacific Ocean can be characterized by interdecadal Pacific oscillation (IPO) or Pacific decadal oscillation (PDO) based on empirical orthogonal function (EOF) analysis. Although the procedures to derive the IPO and PDO indices differ in their regional focuses and filtering methods to remove interannual variability, the IPO and PDO are highly correlated in time and are often used interchangeably. Studies have shown that the IPO and PDO conjointly (IPO/PDO for conciseness) play a vital role in modulating the pace of global warming. It is less clear, however, how externally forced global warming may, in turn, affect the IPO/PDO. One obstacle to revealing this effect is that the conventional definitions of the IPO/PDO fail to account for the spatial heterogeneity of the background warming trend, which causes the IPO/PDO to be conflated with the warming trend, especially for the twenty-first-century simulation when the forced change is likely to be more dominant. Using a large-ensemble simulation in the Community Earth System Model, version 1 (CESM1), it is shown here that a better practice of detrending prior to EOF analysis is to remove the local and nonlinear trend, defined as the ensemble-mean time series at each grid box (or simply as the quadratic fit of the local time series if such an ensemble is not available). The revised IPO/PDO index is purely indicative of internal decadal variability. In the twenty-first-century warmer climate, the IPO/PDO has a weaker amplitude in space, a higher frequency in time, and a muted impact on global and North American temperature and rainfall.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yangyang Xu, yangyang.xu@tamu.edu

Abstract

Decadal climate variability of sea surface temperature (SST) over the Pacific Ocean can be characterized by interdecadal Pacific oscillation (IPO) or Pacific decadal oscillation (PDO) based on empirical orthogonal function (EOF) analysis. Although the procedures to derive the IPO and PDO indices differ in their regional focuses and filtering methods to remove interannual variability, the IPO and PDO are highly correlated in time and are often used interchangeably. Studies have shown that the IPO and PDO conjointly (IPO/PDO for conciseness) play a vital role in modulating the pace of global warming. It is less clear, however, how externally forced global warming may, in turn, affect the IPO/PDO. One obstacle to revealing this effect is that the conventional definitions of the IPO/PDO fail to account for the spatial heterogeneity of the background warming trend, which causes the IPO/PDO to be conflated with the warming trend, especially for the twenty-first-century simulation when the forced change is likely to be more dominant. Using a large-ensemble simulation in the Community Earth System Model, version 1 (CESM1), it is shown here that a better practice of detrending prior to EOF analysis is to remove the local and nonlinear trend, defined as the ensemble-mean time series at each grid box (or simply as the quadratic fit of the local time series if such an ensemble is not available). The revised IPO/PDO index is purely indicative of internal decadal variability. In the twenty-first-century warmer climate, the IPO/PDO has a weaker amplitude in space, a higher frequency in time, and a muted impact on global and North American temperature and rainfall.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yangyang Xu, yangyang.xu@tamu.edu
Save