• AchutaRao, K., and K. R. Sperber, 2006: ENSO simulation in coupled ocean-atmosphere models: Are the current models better? Climate Dyn., 27, 115, https://doi.org/10.1007/s00382-006-0119-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and et al. , 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., M. Webb, C. Bretherton, S. Klein, P. Siebesma, G. Tselioudis, and M. Zhang, 2011: CFMIP: Towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models. CLIVAR Exchanges, No. 56, International CLIVAR Project Office, Southampton, United Kingdom, 20–24.

  • Cai, W., and et al. , 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15, 274298, https://doi.org/10.1016/j.ocemod.2006.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., Y. Yu, and D. Sun, 2013: Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Climate, 26, 49474961, https://doi.org/10.1175/JCLI-D-12-00575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, and Y. Yu, 2015: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 32503274, https://doi.org/10.1175/JCLI-D-14-00439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, Y. Yu, and S. K. Behera, 2017: A possible explanation for the divergent projection of ENSO amplitude change under global warming. Climate Dyn., 49, 37993811, https://doi.org/10.1007/s00382-017-3544-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and S. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 25732590, https://doi.org/10.1175/2007JCLI1975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrett, S., and M. Collins, 2016: ENSO feedbacks and their relationships with the mean state in a flux adjusted ensemble. Climate Dyn., https://doi.org/10.1007/s00382-016-3270-9, in press.

    • Search Google Scholar
    • Export Citation
  • Ferrett, S., M. Collins, and H.-L. Ren, 2017: Understanding bias in the evaporative damping of El Niño–Southern Oscillation events in CMIP5 models. J. Climate, 30, 63516370, https://doi.org/10.1175/JCLI-D-16-0748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., P. Braconnot, F.-F. Jin, S. T. Kim, M. Kolasinski, T. Li, and I. Musat, 2009: Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J. Climate, 22, 56985718, https://doi.org/10.1175/2009JCLI2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J., J. Caron, G. Danabasoglu, K. Oleson, C. Bitz, and J. Truesdale, 2006: CCSM–CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Climate, 19, 22672289, https://doi.org/10.1175/JCLI3764.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index of ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. Hnilo, M. Fiorino, and G. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., Y.-S. Jang, D.-H. Kim, Y. H. Kim, M. Watanabe, F.-F. Jin, and J. S. Kug, 2011: El Niño–Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model. J. Geophys. Res., 116, D22112, https://doi.org/10.1029/2011JD016526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., and F.-F. Jin, 2011a: An ENSO stability analysis. Part I: Results from a hybrid coupled model. Climate Dyn., 36, 15931607, https://doi.org/10.1007/s00382-010-0796-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., and F.-F. Jin, 2011b: An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36, 16091627, https://doi.org/10.1007/s00382-010-0872-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., W. Cai, F.-F. Jin, and J.-Y. Yu, 2014a: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42, 33133321, https://doi.org/10.1007/s00382-013-1833-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., W. Cai, F.-F. Jin, A. Santoso, L. Wu, E. Guilyardi, and S.-I. An, 2014b: Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Climate Change, 4, 786790, https://doi.org/10.1038/nclimate2326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, https://doi.org/10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and G. J. Zhang, 2008: Understanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric Research Community Atmosphere Model (CAM3) during El Niño. J. Geophys. Res., 113, D02103, https://doi.org/10.1029/2008JE003097.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L. J., B. Wang, and G. J. Zhang, 2014: The role of nonconvective condensation processes in response of surface shortwave cloud radiative forcing to El Niño warming. J. Climate, 27, 67216736, https://doi.org/10.1175/JCLI-D-13-00632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L. J., B. Wang, and G. J. Zhang, 2015: The role of moist processes in shortwave radiative feedback during ENSO in the CMIP5 models. J. Climate, 28, 98929908, https://doi.org/10.1175/JCLI-D-15-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, H. Weller, and J. Slingo, 2009: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett., 10, 170176, https://doi.org/10.1002/asl.227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J. Climate, 25, 42754293, https://doi.org/10.1175/JCLI-D-11-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAvaney, B. J., and H. Le Treut, 2003: The Cloud Feedback Intercomparison Project: (CFMIP). CLIVAR Exchanges, No. 26, International CLIVAR Project Office, Southampton, United Kingdom, 1–4.

  • Mechoso, C. A., and et al. , 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R., J. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, https://doi.org/10.1175/2008JCLI2244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S., D. Gu, G. Lambert, T. Li, D. Halpern, N.-C. Lau, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, https://doi.org/10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732, https://doi.org/10.1038/351027a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64, 779784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., J. Fasullo, T. Zhang, and A. Roubicek, 2003: On the radiative and dynamical feedbacks over the equatorial cold tongue. J. Climate, 16, 24252432, https://doi.org/10.1175/2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., and et al. , 2006: Radiative and dynamical feedbacks over the equatorial cold tongue: Results from nine atmospheric GCMs. J. Climate, 19, 40594074, https://doi.org/10.1175/JCLI3835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., Y. Yu, and T. Zhang, 2009: Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J. Climate, 22, 12871304, https://doi.org/10.1175/2008JCLI2267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannière, B., E. Guilyardi, G. Madec, F. Doblas-Reyes, and S. Woolnough, 2013: Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Climate Dyn., 40, 963981, https://doi.org/10.1007/s00382-012-1429-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannière, B., E. Guilyardi, T. Toniazzo, G. Madec, and S. Woolnough, 2014: A systematic approach to identify the sources of tropical SST errors in coupled models using the adjustment of initialised experiments. Climate Dyn., 43, 22612282, https://doi.org/10.1007/s00382-014-2051-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543562, https://doi.org/10.1175/2010JCLI3878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M., C. Senior, S. Bony, and J. J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905922, https://doi.org/10.1007/s003820100157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., F.-F. Jin, J. Zhao, and J. Li, 2013: On the bias in simulated ENSO SSTA meridional widths of CMIP3 models. J. Climate, 26, 31733186, https://doi.org/10.1175/JCLI-D-12-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., H. Liu, and M. Zhang, 2015: Double ITCZ in coupled ocean-atmosphere models: From CMIP3 to CMIP5. Geophys. Res. Lett., 42, 86518659, https://doi.org/10.1002/2015GL065973.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 4
PDF Downloads 57 57 5

Diagnosing Relationships between Mean State Biases and El Niño Shortwave Feedback in CMIP5 Models

View More View Less
  • 1 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
  • | 2 Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, and Department of Atmospheric Science, School of Environmental Studies, China University of Geoscience, Wuhan, and CMA–Nanjing University Joint Laboratory for Climate Prediction Studies, School of Atmospheric Sciences, Nanjing University, Nanjing, China
© Get Permissions
Restricted access

Abstract

The rate of damping of tropical Pacific sea surface temperature anomalies (SSTAs) associated with El Niño events by surface shortwave heat fluxes has significant biases in current coupled climate models [phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. Of 33 CMIP5 models, 16 have shortwave feedbacks that are weakly negative in comparison to observations, or even positive, resulting in a tendency of amplification of SSTAs. Two biases in the cloud response to El Niño SSTAs are identified and linked to significant mean state biases in CMIP5 models. First, cool mean SST and reduced precipitation are linked to comparatively less cloud formation in the eastern equatorial Pacific during El Niño events, driven by a weakened atmospheric ascent response. Second, a spurious reduction of cloud driven by anomalous surface relative humidity during El Niño events is present in models with more stable eastern Pacific mean atmospheric conditions and more low cloud in the mean state. Both cloud response biases contribute to a weak negative shortwave feedback or a positive shortwave feedback that amplifies El Niño SSTAs. Differences between shortwave feedback in the coupled models and the corresponding atmosphere-only models (AMIP) are also linked to mean state differences, consistent with the biases found between different coupled models. Shortwave feedback bias can still persist in AMIP, as a result of persisting weak shortwave responses to anomalous cloud and weak cloud responses to atmospheric ascent. This indicates the importance of bias in the atmosphere component to coupled model feedback and mean state biases.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samantha Ferrett, s.ferrett@exeter.ac.uk

Abstract

The rate of damping of tropical Pacific sea surface temperature anomalies (SSTAs) associated with El Niño events by surface shortwave heat fluxes has significant biases in current coupled climate models [phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. Of 33 CMIP5 models, 16 have shortwave feedbacks that are weakly negative in comparison to observations, or even positive, resulting in a tendency of amplification of SSTAs. Two biases in the cloud response to El Niño SSTAs are identified and linked to significant mean state biases in CMIP5 models. First, cool mean SST and reduced precipitation are linked to comparatively less cloud formation in the eastern equatorial Pacific during El Niño events, driven by a weakened atmospheric ascent response. Second, a spurious reduction of cloud driven by anomalous surface relative humidity during El Niño events is present in models with more stable eastern Pacific mean atmospheric conditions and more low cloud in the mean state. Both cloud response biases contribute to a weak negative shortwave feedback or a positive shortwave feedback that amplifies El Niño SSTAs. Differences between shortwave feedback in the coupled models and the corresponding atmosphere-only models (AMIP) are also linked to mean state differences, consistent with the biases found between different coupled models. Shortwave feedback bias can still persist in AMIP, as a result of persisting weak shortwave responses to anomalous cloud and weak cloud responses to atmospheric ascent. This indicates the importance of bias in the atmosphere component to coupled model feedback and mean state biases.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samantha Ferrett, s.ferrett@exeter.ac.uk
Save