• Aoki, S., S. R. Rintoul, S. Ushio, S. Watanabe, and N. L. Bindoff, 2005: Freshening of the Adélie Land Bottom Water near 140°E. Geophys. Res. Lett., 32, L23601, https://doi.org/10.1029/2005GL024246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arndt, J. E., and et al. , 2013: The International Bathymetric Chart of the Southern Ocean (IBCSO) version 1.0—A new bathymetric compilation covering circum-Antarctic waters. Geophys. Res. Lett., 40, 31113117, https://doi.org/10.1002/grl.50413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arzeno, I. B., R. C. Beardsley, R. Limeburner, B. Owens, L. Padman, S. R. Springer, C. L. Stewart, and M. J. M. Williams, 2014: Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica. J. Geophys. Res. Oceans, 119, 42144233, https://doi.org/10.1002/2014JC009792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and D. B. Stephenson, 2012: Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Climate Dyn., 39, 28052821, https://doi.org/10.1007/s00382-012-1330-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. J. Monaghan, K. W. Manning, and J. G. Powers, 2005: Real-time forecasting for the Antarctic: An evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Wea. Rev., 133, 579603, https://doi.org/10.1175/MWR-2881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budgell, P., 2005: Numerical simulation of ice-ocean variability in the Barents Sea region: Towards dynamical downscaling. Ocean Dyn., 55, 370387, https://doi.org/10.1007/s10236-005-0008-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budillon, G., P. Castagno, S. Aliani, G. Spezie, and L. Padman, 2011: Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep-Sea Res. I, 58, 10021018, https://doi.org/10.1016/j.dsr.2011.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2010: Polar Oceans from Space. Atmospheric and Oceanographic Sciences Library Series, Vol. 41, Springer, 507 pp., https://doi.org/10.1007/978-0-387-68300-3.

    • Crossref
    • Export Citation
  • Comiso, J. C., R. Kwok, S. Martin, and A. L. Gordon, 2011: Variability and trends in sea ice extent and ice production in the Ross Sea. J. Geophys. Res., 116, C04021, https://doi.org/10.1029/2010JC006391.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., R. A. Gersten, L. V. Stock, J. Turner, G. J. Perez, and K. Cho, 2017: Positive trend in the Antarctic sea ice cover and associated changes in surface temperature. J. Climate, 30, 22512267, https://doi.org/10.1175/JCLI-D-16-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., and T. J. Bracegirdle, 2007: An Antarctic assessment of IPCC AR4 coupled models. Geophys. Res. Lett., 34, L22505, https://doi.org/10.1029/2007GL031648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dale, E. R., A. J. McDonald, J. H. J. Coggins, and W. Rack, 2017: Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region. The Cryosphere, 11, 267–280, https://doi.org/10.5194/tc-11-267-2017.

    • Crossref
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. van den Broeke, and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, https://doi.org/10.1038/nature1256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, https://doi.org/10.1038/ngeo1129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, and W. O. Smith Jr., 2007: Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica. J. Geophys. Res., 112, C11013, https://doi.org/10.1029/2006JC004036.

    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, and W. O. Smith Jr., 2011: A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep-Sea Res. II, 58, 15081523, https://doi.org/10.1016/j.dsr2.2010.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, and E. E. Hofmann, 2012: Sensitivity of Circumpolar Deep Water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. J. Climate, 25, 47994816, https://doi.org/10.1175/JCLI-D-11-00307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, L.-S. Bai, D. H. Bromwich, K. M. Hines, and D. M. Holland, 2015: The effect of atmospheric forcing resolution on delivery of ocean heat to the Antarctic floating ice shelves. J. Climate, 28, 60676085, https://doi.org/10.1175/JCLI-D-14-00374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., M. Biasutti, and A. H. Sobel, 2012: Projected changes in the seasonal cycle of surface temperature. J. Climate, 25, 63596374, https://doi.org/10.1175/JCLI-D-11-00741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, T., C. Deser, and D. P. Schneider, 2014: Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett., 41, 24192426, https://doi.org/10.1002/2014GL059239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fretwell, P., and et al. , 2013: Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 375393, https://doi.org/10.5194/tc-7-375-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., A. H. Orsi, R. D. Muench, B. A. Huber, E. Zambianchi, and M. Visbeck, 2009: Western Ross Sea continental slope gravity currents. Deep-Sea Res. II, 56, 796817, https://doi.org/10.1016/j.dsr2.2008.10.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., B. A. Huber, and J. Busecke, 2015: Bottom water export from the western Ross Sea, 2007 through 2010. Geophys. Res. Lett., 42, 53875394, https://doi.org/10.1002/2015GL064457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, L. I., L. A. Codispoti, J. C. Jennings Jr., F. J. Millero, J. M. Morrison, and C. Sweeney, 2000: Seasonal evolution of hydrographic properties in the Ross Sea, Antarctica, 1996–1997. Deep-Sea Res. II, 47, 30953117, https://doi.org/10.1016/S0967-0645(00)00060-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and et al. , 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys., 227, 35953624, https://doi.org/10.1016/j.jcp.2007.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and G. L. Mellor, 1992: Modeling the seasonal variability of a coupled Arctic ice-ocean system. J. Geophys. Res., 97, 20 28520 304, https://doi.org/10.1029/92JC02037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, https://doi.org/10.1016/j.ocemod.2013.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, D. M., and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, https://doi.org/10.1038/ngeo1627.

  • Horgan, H. J., R. T. Walker, S. Anandakrishnan, and R. B. Alley, 2011: Surface elevation changes at the front of the Ross Ice Shelf: Implications for basal melting. J. Geophys. Res., 116, C02005, https://doi.org/10.1029/2010JC006192.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., 2001: Viscous–plastic sea ice dynamics with the EVP model: Linearization issues. J. Comput. Phys., 170, 1838, https://doi.org/10.1006/jcph.2001.6710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., 2004: Bottom water production and its links with the thermohaline circulation. Antarct. Sci., 16, 427437, https://doi.org/10.1017/S095410200400224X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., and C. F. Giulivi, 1999: Thermohaline data and ocean circulation on the Ross Sea continental shelf. Oceanography of the Ross Sea, Antarctica, G. Spezie and G. M. R. Manzella, Eds., Springer, 3–16, https://doi.org/10.1007/978-88-470-2250-8_1.

    • Crossref
    • Export Citation
  • Jacobs, S. S., and C. F. Giulivi, 2010: Large multidecadal salinity trends near the Pacific–Antarctic continental margin. J. Climate, 23, 45084524, https://doi.org/10.1175/2010JCLI3284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., A. L. Gordon, and J. L. Ardai, 1979: Circulation and melting beneath the Ross Ice Shelf. Science, 203, 439443, https://doi.org/10.1126/science.203.4379.439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., R. Fairbanks, and Y. Horibe, 1985: Origin and evolution of water masses near the Antarctic continental margin: Evidence from H2 18O/H2 16O ratios in seawater. Oceanology of the Antarctic Continental Shelf, S. S. Jacobs, Ed., AGU Antarctic Research Series, Vol. 43, Amer. Geophys. Union, 58–85, https://doi.org/10.1029/AR043p0059.

    • Crossref
    • Export Citation
  • Jacobs, S. S., H. H. Hellmer, C. S. M. Doake, A. Jenkins, and R. Frolich, 1992: Melting of ice shelves and the mass balance of Antarctica. J. Glaciol., 38, 375387, https://doi.org/10.1017/S0022143000002252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., C. F. Giulivi, and P. A. Mele, 2002: Freshening of the Ross Sea during the late 20th century. Science, 297, 386389, https://doi.org/10.1126/science.1069574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and et al. , 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19, 39523972, https://doi.org/10.1175/JCLI3827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, D. E., M. A. M. Friedrichs, W. O. Smith Jr., E. E. Hofmann, M. S. Dinniman, and J. C. P. Hemmings, 2017: Climate change impacts on southern Ross Sea phytoplankton composition, productivity, and export. J. Geophys. Res. Oceans, 122, 23392359, https://doi.org/10.1002/2016JC012514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohut, J., E. Hunter, and B. Huber, 2013: Small-scale variability of the cross-shelf flow over the outer shelf of the Ross Sea. J. Geophys. Res. Oceans, 118, 18631876, https://doi.org/10.1002/jgrc.20090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusahara, K., and H. Hasumi, 2013: Modeling Antarctic ice shelf responses to future climate changes and impacts on the ocean. J. Geophys. Res. Oceans, 118, 24542475, https://doi.org/10.1002/jgrc.20166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2005: Ross sea ice motion, area flux, and deformation. J. Climate, 18, 37593776, https://doi.org/10.1175/JCLI3507.1.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, https://doi.org/10.1038/nature12945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. J. McGillicuddy Jr., M. S. Dinniman, and J. M. Klinck, 2017: Processes influencing formation of low-salinity high-biomass lenses near the edge of the Ross Ice Shelf. J. Mar. Syst., 166, 108119, https://doi.org/10.1016/j.jmarsys.2016.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. C. Moore, X. Cheng, R. M. Gladstone, J. N. Bassis, H. Liu, J. Wen, and F. Hui, 2015: Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proc. Natl. Acad. Sci. USA, 112, 32633268, https://doi.org/10.1073/pnas.1415137112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loose, B., P. Schlosser, W. M. Smethie, and S. Jacobs, 2009: An optimized estimate of glacial melt from the Ross Ice Shelf using noble gases, stable isotopes, and CFC transient tracers. J. Geophys. Res., 114, C08007, https://doi.org/10.1029/2008JC005048.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Mack, S. L., 2017: Influence of tides and mesoscale eddies in the Ross Sea. Ph.D. dissertation, Old Dominion University, 132 pp.

  • Mack, S. L., M. S. Dinniman, D. J. McGillicuddy Jr., P. N. Sedwick, and J. M. Klinck, 2017: Dissolved iron transport pathways in the Ross Sea: Influence of tides and horizontal resolution in a regional ocean model. J. Mar. Syst., 166, 7386, https://doi.org/10.1016/j.jmarsys.2016.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S., R. S. Drucker, and R. Kwok, 2007: The areas and ice production of the western and central Ross Sea polynyas, 1992–2002, and their relation to the B-15 and C-19 iceberg events of 2000 and 2002. J. Mar. Syst., 68, 201214, https://doi.org/10.1016/j.jmarsys.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., and et al. , 2015: Iron supply and demand in an Antarctic shelf ecosystem. Geophys. Res. Lett., 42, 80888097, https://doi.org/10.1002/2015GL065727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and L. Kantha, 1989: An ice-ocean coupled model. J. Geophys. Res., 94, 10 93710 954, https://doi.org/10.1029/JC094iC08p10937.

  • Moholdt, G., L. Padman, and H. A. Fricker, 2014: Basal mass budget of Ross and Filchner-Ronne ice shelves, Antarctica, derived from Lagrangian analysis of ICESat altimetry. J. Geophys. Res. Earth Surf., 119, 23612380, https://doi.org/10.1002/2014JF003171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakayama, Y., R. Timmermann, C. B. Rodehacke, M. Schröder, and H. H. Hellmer, 2014: Modeling the spreading of glacial meltwater from the Amundsen and Bellingshausen Seas. Geophys. Res. Lett., 41, 79427949, https://doi.org/10.1002/2014GL061600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2014: Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. J. Climate, 27, 21092124, https://doi.org/10.1175/JCLI-D-13-00432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modelling and Prediction of the Upper Layers of the Ocean: Proceedings of a NATO Advanced Study Institute, E. B. Kraus, Ed., Pergamon Press, 143–172.

  • Orsi, A. H., and T. Whitworth III, 2005: Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). Vol. 1, Southern Ocean, International WOCE Project Office, 223 pp.

  • Orsi, A. H., and C. L. Wiederwohl, 2009: A recount of Ross Sea waters. Deep-Sea Res. II, 56, 778795, https://doi.org/10.1016/j.dsr2.2008.10.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55109, https://doi.org/10.1016/S0079-6611(99)00004-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., W. M. Smethie Jr., and J. L. Bullister, 2002: On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res., 107, https://doi.org/10.1029/2001JC000976.

    • Search Google Scholar
    • Export Citation
  • Padman, L., S. L. Howard, A. H. Orsi, and R. D. Muench, 2009: Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water. Deep-Sea Res. II, 56, 818834, https://doi.org/10.1016/j.dsr2.2008.10.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2002: Trends in the length of the Southern Ocean sea-ice season, 1979–99. Ann. Glaciol., 34, 435440, https://doi.org/10.3189/172756402781817482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., A. J. Monaghan, A. M. Cayette, D. H. Bromwich, Y.-H. Kuo, and K. W. Manning, 2003: Real-time mesoscale modeling over Antarctica: The Antarctic Mesoscale Prediction System (AMPS). Bull. Amer. Meteor. Soc., 84, 15331545, https://doi.org/10.1175/BAMS-84-11-1533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2012: Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Climate, 25, 58305844, https://doi.org/10.1175/JCLI-D-11-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26, 61056122, https://doi.org/10.1175/JCLI-D-12-00834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice shelf melting around Antarctica. Science, 341, 266270, https://doi.org/10.1126/science.1235798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 2007: Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific Oceans. Geophys. Res. Lett., 34, L06606, https://doi.org/10.1029/2006GL028550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, N. J., and M. J. M. Williams, 2012: Iceberg-induced changes to polynya operation and regional oceanography in the southern Ross Sea, Antarctica, from in situ observations. Antarct. Sci., 24, 514526, https://doi.org/10.1017/S0954102012000296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., A. W. Walker, D. E. Beuschel, and M. D. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. WMO/TD-737, World Meteorological Organization, 115 pp., https://isccp.giss.nasa.gov/pub/documents/d-doc.pdf.

  • Saunders, P. M., A. C. Coward, and B. A. de Cuevas, 1999: Circulation of the Pacific Ocean seen in a global ocean model: Ocean Circulation and Climate Advanced Modelling project (OCCAM). J. Geophys. Res., 104, 18 28118 299, https://doi.org/10.1029/1999JC900091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schine, C. M. S., G. van Dijken, and K. R. Arrigo, 2016: Spatial analysis of trends in primary production and relationship with large-scale climate variability in the Ross Sea, Antarctica (1997–2013). J. Geophys. Res. Oceans, 121, 368386, https://doi.org/10.1002/2015JC011014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multidecadal warming of Antarctic waters. Science, 346, 12271231, https://doi.org/10.1126/science.1256117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3634. J. Comput. Phys., 228, 89859000, https://doi.org/10.1016/j.jcp.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, K., S. Aoki, K. I. Ohshima, and S. R. Rintoul, 2012: Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian–Antarctic Basin. Ocean Sci., 8, 419432, https://doi.org/10.5194/os-8-419-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smethie, W. M., and S. S. Jacobs, 2005: Circulation and melting under the Ross Ice Shelf: Estimates from evolving CFC, salinity and temperature fields in the Ross Sea. Deep-Sea Res. I, 52, 959978, https://doi.org/10.1016/j.dsr.2004.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. O., Jr., M. S. Dinniman, E. E. Hofmann, and J. M. Klinck, 2014: The effects of changing winds and temperatures on the oceanography of the Ross Sea in the 21st century. Geophys. Res. Lett., 41, 16241631, https://doi.org/10.1002/2014GL059311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and southern annular mode variability. J. Geophys. Res., 113, C03S90, https://doi.org/10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., R. Massom, D. Rind, and D. Martinson, 2012: Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys. Res. Lett., 39, L06501, https://doi.org/10.1029/2012GL050874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., G. L. Mellor, and M. G. McPhee, 1989: Role of the molecular sublayer in the melting or freezing of sea ice. J. Phys. Oceanogr., 19, 139147, https://doi.org/10.1175/1520-0485(1989)019<0139:ROTMSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, A. A., M. S. Dinniman, V. Zagorodnov, S. W. Tyler, and D. M. Holland, 2013: Intrusion of warm surface water beneath the McMurdo Ice Shelf, Antarctica. J. Geophys. Res. Oceans, 118, 70367048, https://doi.org/10.1002/2013JC008842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2012: Sensitivity of the ocean’s deep overturning circulation to easterly Antarctic winds. Geophys. Res. Lett., 39, L18604, https://doi.org/10.1029/2012GL053099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2013: Connecting Antarctic cross-slope exchange with Southern Ocean overturning. J. Phys. Oceanogr., 43, 14531471, https://doi.org/10.1175/JPO-D-12-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, R., and H. H. Hellmer, 2013: Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling. Ocean Dyn., 63, 10111026, https://doi.org/10.1007/s10236-013-0642-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trumbore, S. E., S. S. Jacobs, and W. M. Smethie, 1991: Chlorofluorocarbon evidence for rapid ventilation of the Ross Sea. Deep-Sea Res., 38, 845870, https://doi.org/10.1016/0198-0149(91)90022-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and et al. , 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, https://doi.org/10.1029/2009GL037524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., J. S. Hosking, G. J. Marshall, T. Phillips, and T. J. Bracegirdle, 2016: Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low. Climate Dyn., 46, 23912402, https://doi.org/10.1007/s00382-015-2708-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Lipzig, N. P. M., J. C. King, T. A. Lachlan-Cope, and M. R. van den Broeke, 2004: Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. J. Geophys. Res., 109, D24106, https://doi.org/10.1029/2004JD004701.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., III, and A. H. Orsi, 2006: Antarctic Bottom Water production and export by tides in the Ross Sea. Geophys. Res. Lett., 33, L12609, https://doi.org/10.1029/2006GL026357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitworth, T., III, A. H. Orsi, S.-J. Kim, W. D. Nowlin Jr., and R. A. Locarnini, 1998: Water masses and mixing near the Antarctic Slope Front. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., AGU Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 1–27

    • Crossref
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184194.

  • Zhang, J., 2014: Modeling the impact of wind intensification on Antarctic sea ice volume. J. Climate, 27, 202214, https://doi.org/10.1175/JCLI-D-12-00139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 150 150 28
PDF Downloads 104 104 21

Effects of Projected Changes in Wind, Atmospheric Temperature, and Freshwater Inflow on the Ross Sea

View More View Less
  • 1 Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia
  • | 2 Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia
© Get Permissions
Restricted access

Abstract

A 5-km horizontal resolution regional ocean–sea ice–ice shelf model of the Ross Sea is used to examine the effects of changes in wind strength, air temperature, and increased meltwater input on the formation of high-salinity shelf water (HSSW), on-shelf transport and vertical mixing of Circumpolar Deep Water (CDW) and its transformation into modified CDW (MCDW), and basal melt of the Ross Ice Shelf (RIS). A 20% increase in wind speed, with no other atmospheric changes, reduced summer sea ice minimum area by 20%, opposite the observed trend of the past three decades. Increased winds with spatially uniform, reduced atmospheric temperatures increased summer sea ice concentrations, on-shelf transport of CDW, vertical mixing of MCDW, HSSW volume, and (albeit small) RIS basal melt. Winds and atmospheric temperatures from the SRES A1B scenario forcing of the MPI ECHAM5 model decreased on-shelf transport of CDW and vertical mixing of MCDW for 2046–61 and 2085–2100 relative to the end of the twentieth century. The RIS basal melt increased slightly by 2046–61 (9%) and 2085–2100 (13%). Advection of lower-salinity water onto the continental shelf did not significantly affect sea ice extent for the 2046–61 or 2085–2100 simulations. However, freshening reduces on-shelf transport of CDW, vertical mixing of MCDW, and the volume of HSSW produced. The reduced vertical mixing of MCDW, while partially balanced by the reduced on-shelf transport of CDW, enhances the RIS basal melt rate relative to the twentieth-century simulation for 2046–61 (13%) and 2085–2100 (17%).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0351.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael S. Dinniman, msd@ccpo.odu.edu

Abstract

A 5-km horizontal resolution regional ocean–sea ice–ice shelf model of the Ross Sea is used to examine the effects of changes in wind strength, air temperature, and increased meltwater input on the formation of high-salinity shelf water (HSSW), on-shelf transport and vertical mixing of Circumpolar Deep Water (CDW) and its transformation into modified CDW (MCDW), and basal melt of the Ross Ice Shelf (RIS). A 20% increase in wind speed, with no other atmospheric changes, reduced summer sea ice minimum area by 20%, opposite the observed trend of the past three decades. Increased winds with spatially uniform, reduced atmospheric temperatures increased summer sea ice concentrations, on-shelf transport of CDW, vertical mixing of MCDW, HSSW volume, and (albeit small) RIS basal melt. Winds and atmospheric temperatures from the SRES A1B scenario forcing of the MPI ECHAM5 model decreased on-shelf transport of CDW and vertical mixing of MCDW for 2046–61 and 2085–2100 relative to the end of the twentieth century. The RIS basal melt increased slightly by 2046–61 (9%) and 2085–2100 (13%). Advection of lower-salinity water onto the continental shelf did not significantly affect sea ice extent for the 2046–61 or 2085–2100 simulations. However, freshening reduces on-shelf transport of CDW, vertical mixing of MCDW, and the volume of HSSW produced. The reduced vertical mixing of MCDW, while partially balanced by the reduced on-shelf transport of CDW, enhances the RIS basal melt rate relative to the twentieth-century simulation for 2046–61 (13%) and 2085–2100 (17%).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0351.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael S. Dinniman, msd@ccpo.odu.edu

Supplementary Materials

    • Supplemental Materials (DOCX 2.62 MB)
Save