• Adler, R. F., and et al. , 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and A. H. Sobel, 2002: A simple model of a convectively coupled Walker circulation using the weak temperature gradient approximation. J. Climate, 15, 29072920, https://doi.org/10.1175/1520-0442(2002)015<2907:ASMOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and A. H. Sobel, 2003: The Gill model and the weak temperature gradient approximation. J. Atmos. Sci., 60, 451460, https://doi.org/10.1175/1520-0469(2003)060<0451:TGMATW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Climate, 29, 90459061, https://doi.org/10.1175/JCLI-D-16-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and T. Schneider, 2016: Narrowing of the ITCZ in a warming climate: Physical mechanisms. Geophys. Res. Lett., 43, 11 35011 357, https://doi.org/10.1002/2016GL070396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, https://doi.org/10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Good, and K. Willett, 2016: A simple moisture advection model of specific humidity change over land in response to SST warming. J. Climate, 29, 76137632, https://doi.org/10.1175/JCLI-D-16-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., H. Douville, and C. B. Skinner, 2017: Timeslice experiments for understanding regional climate projections: Applications to the tropical hydrological cycle and European winter circulation. Climate Dyn., 49, 30113029, https://doi.org/10.1007/s00382-016-3488-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, https://doi.org/10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and et al. , 2013: Climate change phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., 1029–1136.

  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, https://doi.org/10.1002/qj.2297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2016: IFS documentation—Cy43r1 operational implementation 22 Nov 2016—Part IV: Physical processes. ECMWF Rep., 223 pp., https://www.ecmwf.int/sites/default/files/elibrary/2016/17117-part-iv-physical-processes.pdf.

  • Flato, G., and et al. , 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340, https://doi.org/10.1175/2008BAMS2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1; Corrigendum, 24, 1559–1560, https://doi.org/10.1175/2010JCLI4045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, 2012: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. John Wiley & Sons, 274 pp.

    • Crossref
    • Export Citation
  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., J. D. Neelin, and C. R. Mechoso, 2017: Tropical convective transition statistics and causality in the water vapor–precipitation relation. J. Atmos. Sci., 74, 915931, https://doi.org/10.1175/JAS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., A. J. Ferraro, and R. Chadwick, 2017: Land–ocean shifts in tropical precipitation linked to surface temperature and humidity change. J. Climate, 30, 45274545, https://doi.org/10.1175/JCLI-D-16-0649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2015: Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl. Acad. Sci. USA, 112, 36303635, https://doi.org/10.1073/pnas.1418682112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, https://doi.org/10.1029/97JC03424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2015: Historical El Niño/La Niña episodes (1950–present). National Weather Service Climate Prediction Center, accessed 13 January 2017, http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml.

  • Pfhal, S., and N. Niedermann, 2011: Daily covariations in near-surface relative humidity and temperature over the ocean. J. Geophys. Res., 116, D19104, https://doi.org/10.1029/2011JD015792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., J. D. Neelin, D. K. Adams, and B. R. Lintner, 2016: Deep convection and column water vapor over tropical land versus tropical ocean: A comparison between the Amazon and the tropical western Pacific. J. Atmos. Sci., 73, 40434063, https://doi.org/10.1175/JAS-D-16-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova, 2010: Tropospheric water vapor, convection, and climate. Rev. Geophys., 48, RG2001, https://doi.org/10.1029/2009RG000301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701, https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, S. N., 2006: Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC, 410 pp.

    • Crossref
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 76 14
PDF Downloads 56 56 17

Diagnosing ENSO and Global Warming Tropical Precipitation Shifts Using Surface Relative Humidity and Temperature

View More View Less
  • 1 University of Exeter, Exeter, United Kingdom
  • | 2 Met Office Hadley Centre, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

Large uncertainty remains in future projections of tropical precipitation change under global warming. A simplified method for diagnosing tropical precipitation change is tested here on present-day El Niño–Southern Oscillation (ENSO) precipitation shifts. This method, based on the weak temperature gradient approximation, assumes precipitation is associated with local surface relative humidity (RH) and surface air temperature (SAT), relative to the tropical mean. Observed and simulated changes in RH and SAT are subsequently used to diagnose changes in precipitation. Present-day ENSO precipitation shifts are successfully diagnosed using observations (correlation r = 0.69) and an ensemble of atmosphere-only (0.51 ≤ r ≤ 0.8) and coupled (0.5 ≤ r ≤ 0.87) climate model simulations. RH (r = 0.56) is much more influential than SAT (r = 0.27) in determining ENSO precipitation shifts for observations and climate model simulations over both land and ocean. Using intermodel differences, a significant relationship is demonstrated between method performance over ocean for present-day ENSO and projected global warming (r = 0.68). As a caveat, the authors note that mechanisms leading to ENSO-related precipitation changes are not a direct analog for global warming–related precipitation changes. The diagnosis method presented here demonstrates plausible mechanisms that relate changes in precipitation, RH, and SAT under different climate perturbations. Therefore, uncertainty in future tropical precipitation changes may be linked with uncertainty in future RH and SAT changes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexander Todd, adt205@exeter.ac.uk

Abstract

Large uncertainty remains in future projections of tropical precipitation change under global warming. A simplified method for diagnosing tropical precipitation change is tested here on present-day El Niño–Southern Oscillation (ENSO) precipitation shifts. This method, based on the weak temperature gradient approximation, assumes precipitation is associated with local surface relative humidity (RH) and surface air temperature (SAT), relative to the tropical mean. Observed and simulated changes in RH and SAT are subsequently used to diagnose changes in precipitation. Present-day ENSO precipitation shifts are successfully diagnosed using observations (correlation r = 0.69) and an ensemble of atmosphere-only (0.51 ≤ r ≤ 0.8) and coupled (0.5 ≤ r ≤ 0.87) climate model simulations. RH (r = 0.56) is much more influential than SAT (r = 0.27) in determining ENSO precipitation shifts for observations and climate model simulations over both land and ocean. Using intermodel differences, a significant relationship is demonstrated between method performance over ocean for present-day ENSO and projected global warming (r = 0.68). As a caveat, the authors note that mechanisms leading to ENSO-related precipitation changes are not a direct analog for global warming–related precipitation changes. The diagnosis method presented here demonstrates plausible mechanisms that relate changes in precipitation, RH, and SAT under different climate perturbations. Therefore, uncertainty in future tropical precipitation changes may be linked with uncertainty in future RH and SAT changes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexander Todd, adt205@exeter.ac.uk
Save