• Beardsley, R. C., C. E. Dorman, C. A. Friehe, L. K. Rosenfield, and C. D. Wynant, 1987: Local atmospheric forcing during the Coastal Ocean Dynamics Experiment: 1. A description of the marine boundary layer and atmospheric conditions over a Northern California upwelling region. J. Geophys. Res., 92, 14671488, https://doi.org/10.1029/JC092iC02p01467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and et al. , 2007: The need for a dynamical climate reanalysis. Bull. Amer. Meteor. Soc., 88, 495501, https://doi.org/10.1175/BAMS-88-4-495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299, https://doi.org/10.1175/2008JAMC1921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and et al. , 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Rep. Series on Global Modeling and Data Assimilation NASA/TM–2015-104606/Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Bridger, A. F. C., W. C. Brick, and P. F. Lester, 2005: The structure of the marine inversion layer off the central California coast: Mesoscale conditions. Mon. Wea. Rev., 121, 335351, https://doi.org/10.1175/1520-0493(1993)121<0335:TSOTMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burk, S. D., and W. T. Thompson, 1996: The summertime low-level jet and marine boundary layer structure along the California coast. Mon. Wea. Rev., 124, 668686, https://doi.org/10.1175/1520-0493(1996)124<0668:TSLLJA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardoso, R. M., P. M. M. Soares, D. C. A. Lima, and A. Semedo, 2016: The impact of climate change on the Iberian low-level wind jet: EUROCORDEX regional climate simulation. Tellus, 68A, 29005, https://doi.org/10.3402/tellusa.v68.29005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, S., 1985: Coastal jets in the lower atmosphere. J. Phys. Oceanogr., 15, 361371, https://doi.org/10.1175/1520-0485(1985)015<0361:CJITLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671388, https://doi.org/10.1002/qj.49712051912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: A major low-level air current near the Indian Ocean during the northern summer. Quart. J. Roy. Meteor. Soc., 95, 274289, https://doi.org/10.1002/qj.49709540409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. C. Muñoz, 2005: The low-level jet off the west coast of subtropical South America: Structure and variability. Mon. Wea. Rev., 133, 22462261, https://doi.org/10.1175/MWR2972.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haack, T., S. D. Burk, and R. M. Hodur, 2005: U.S. West Coast surface heat fluxes, wind stress, and wind stress curl from a mesoscale model. Mon. Wea. Rev., 133, 32023216, https://doi.org/10.1175/MWR3025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, https://doi.org/10.1175/2011JCLI4097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1996: On the existence and strength of the summer subtropical anticyclones. Bull. Amer. Meteor. Soc., 77, 12871291.

  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2004: The Interaction of Ocean Waves and Wind. Cambridge University Press, 300 pp.

    • Crossref
    • Export Citation
  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210, https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyasaka, T., and H. Nakamura, 2005: Structure and formation mechanisms of the Northern Hemisphere summertime subtropical highs. J. Climate, 18, 50465065, https://doi.org/10.1175/JCLI3599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moalafhi, D. B., J. P. Evans, and A. Sharma, 2016: Evaluating global reanalysis datasets for provision of boundary conditions in regional climate modelling. Climate Dyn., 47, 27272745, https://doi.org/10.1007/s00382-016-2994-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., and R. D. Garreaud, 2005: Dynamics of the low-level jet off the west coast of subtropical South America. Mon. Wea. Rev., 133, 36613677, https://doi.org/10.1175/MWR3074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., A. Evans, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability, and change. J. Climate, 26, 33573376, https://doi.org/10.1175/JCLI-D-12-00224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2010: A low-level jet along the Benguela coast, an integral part of the Benguela Current ecosystem. Climatic Change, 99, 613624, https://doi.org/10.1007/s10584-009-9678-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., and et al. , 2000: Coastally trapped wind reversals: A new level of understanding from the experiment on coastally trapped disturbances. Bull. Amer. Meteor. Soc., 81, 719743, https://doi.org/10.1175/1520-0477(2000)081<0719:CTWRPT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., 1984: Scale analysis of marine winds in straits and along mountainous coasts. Mon. Wea. Rev., 112, 25302534, https://doi.org/10.1175/1520-0493(1984)112<2530:SAOMWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2000: Forcing of the summertime low-level jet along the California coast. J. Appl. Meteor., 39, 24212433, https://doi.org/10.1175/1520-0450(2000)039<2421:FOTSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., and P. Chang, 2017: Structure and dynamics of the Benguela low-level coastal jet. Climate Dyn., 49, 27652788, https://doi.org/10.1007/s00382-016-3479-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauly, D., and V. Christensen, 1995: Primary production required to sustain global fisheries. Nature, 374, 255257, https://doi.org/10.1038/374255a0.

  • Ranjha, R., G. Svensson, M. Tjernström, and A. Semedo, 2013: Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis. Tellus, 65A, 20412, https://doi.org/10.3402/tellusa.v65i0.20412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranjha, R., M. Tjernström, A. Semedo, G. Svensson, and R. M. Cardoso, 2015: Structure and variability of the Oman coastal low-level jet. Tellus, 67A, 25285, https://doi.org/10.3402/tellusa.v67.25285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranjha, R., M. Tjernström, G. Svensson, and A. Semedo, 2016: Modeling coastal low-level wind-jets: Does horizontal resolution matter? Meteor. Atmos. Phys., 128, 263278, https://doi.org/10.1007/s00703-015-0413-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rijo, N., A. Semedo, P. M. A. Miranda, D. C. A. Lima, R. M. Cardoso, and P. M. M. Soares, 2018: Spatial and temporal variability of the Iberian Peninsula coastal low-level jet. Int. J. Climatol., https://doi.org/10.1002/joc.5303, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., R. Murtugudde, N. Naik, A. Clement, N. Gordon, and J. Miller, 2003: Air–sea interaction and the seasonal cycle of the subtropical anticyclones. J. Climate, 16, 19481966, https://doi.org/10.1175/1520-0442(2003)016<1948:AIATSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., P. M. M. Soares, D. C. A. Lima, R. M. Cardoso, M. Bernardino, and P. M. A. Miranda, 2016: The impact of climate change on the global coastal low-level wind jets: EC-EARTH simulations. Global Planet. Change, 137, 88106, https://doi.org/10.1016/j.gloplacha.2015.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares, P. M. M., R. M. Cardoso, A. Semedo, M. J. Chinita, and R. Ranjha, 2014: Climatology of the Iberia coastal low-level wind jet: Weather Research Forecasting Model high-resolution results. Tellus, 66A, 22377, https://doi.org/10.3402/tellusa.v66.22377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares, P. M. M., D. C. A. Lima, R. M. Cardoso, and A. Semedo, 2017: High resolution projections for the western Iberian coastal low level jet in a changing climate. Climate Dyn., 49, 15471566, https://doi.org/10.1007/s00382-016-3397-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17, 38663873, https://doi.org/10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sydeman, W. J., M. García-Reyes, D. S. Schoeman, R. R. Rykaczewski, S. A. Thompson, B. A. Black, and S. J. Bograd, 2014: Climate change and wind intensification in coastal upwelling ecosystems. Science, 345, 77–80, https://doi.org/10.1126/science.1251635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea ice concentration boundary conditions for AMIP II simulations. Lawrence Livermore National Laboratory PCMDI Rep. 60, 28 pp.

  • Thorne, P. W., and R. S. Vose, 2010: Reanalyses suitable for characterizing long-term trends. Bull. Amer. Meteor. Soc., 91, 353361, https://doi.org/10.1175/2009BAMS2858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., 1999: Sensitivity of coastal atmospheric supercritical flow to ambient conditions. Tellus, 51, 880901, https://doi.org/10.3402/tellusa.v51i5.14499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and B. Grisogono, 2000: Simulations of supercritical flow around points and capes in the coastal atmosphere. J. Atmos. Sci., 57, 108135, https://doi.org/10.1175/1520-0469(1995)052<0863:MTIOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2012: Climate and the Oceans. Princeton University Press, 244 pp.

    • Crossref
    • Export Citation
  • Wang, D., T. C. Gouhier, B. A. Menge, and A. R. Ganguly, 2015: Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518, 390394, https://doi.org/10.1038/nature14235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., 2004: Desert Meteorology. Cambridge University Press, 595 pp.

    • Crossref
    • Export Citation
  • Winant, C. D., C. E. Dorman, C. A. Friehe, and R. C. Beardsley, 1988: The marine layer off northern California: An example of supercritical channel flow. J. Atmos. Sci., 45, 35883605, https://doi.org/10.1175/1520-0469(1988)045<3588:TMLONC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., H. Körnich, and K. Holmgren, 2013: How well do reanalyses represent the southern African precipitation? Climate Dyn., 40, 951962, https://doi.org/10.1007/s00382-012-1423-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 167 167 46
PDF Downloads 132 132 31

A Global View of Coastal Low-Level Wind Jets Using an Ensemble of Reanalyses

View More View Less
  • 1 Instituto Dom Luiz, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
  • | 2 Department of Water Science and Engineering, International Institute for Hydraulic and Environmental Engineering Delft Institute for Water Education, Delft, Netherlands, and Instituto Dom Luiz, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
  • | 3 Instituto Dom Luiz, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
© Get Permissions
Restricted access

Abstract

Global reanalyses are powerful tools to study the recent climate. They are built by combining forecast models with observations through data assimilation, which provide complete spatial and temporal information of observable and unobservable parameters. The reanalyses constitute very valuable three-dimensional data of the atmosphere, which make it possible to investigate a panoply of atmospheric processes, such as coastal low-level jets (CLLJs). In the present study, three global reanalyses, the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim), the Japanese 55-year Reanalysis (JRA-55), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are used to build an ensemble of reanalyses for a period encompassing 1980–2016 with 6-hourly output. A detailed global climatology of CLLJs is presented based on this ensemble of reanalyses. This reanalysis ensemble makes it possible to explore the ability of reanalysis to represent the CLLJs mitigating its uncertainty and adding robustness. The annual and diurnal cycle as well as the interannual variability are analyzed in order to evaluate the temporal variability of frequency of occurrence of CLLJ. The ensemble mean displays a good representation of the seasonal spatial variability of frequency of occurrence of coastal jets. The Oman and Benguela CLLJs show, respectively, a decrease and increase of frequency of occurrence in the studied period, which are statistically significant during boreal summer and austral spring. The coastal jets have higher mean frequencies of occurrences during late afternoon and early evening. During the season where each CLLJ has higher mean frequency of occurrence, the Oman CLLJ is the most intense and occurs at higher altitudes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0395.s1.

Corresponding author: Daniela C.A. Lima, dclima@fc.ul.pt

Abstract

Global reanalyses are powerful tools to study the recent climate. They are built by combining forecast models with observations through data assimilation, which provide complete spatial and temporal information of observable and unobservable parameters. The reanalyses constitute very valuable three-dimensional data of the atmosphere, which make it possible to investigate a panoply of atmospheric processes, such as coastal low-level jets (CLLJs). In the present study, three global reanalyses, the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim), the Japanese 55-year Reanalysis (JRA-55), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are used to build an ensemble of reanalyses for a period encompassing 1980–2016 with 6-hourly output. A detailed global climatology of CLLJs is presented based on this ensemble of reanalyses. This reanalysis ensemble makes it possible to explore the ability of reanalysis to represent the CLLJs mitigating its uncertainty and adding robustness. The annual and diurnal cycle as well as the interannual variability are analyzed in order to evaluate the temporal variability of frequency of occurrence of CLLJ. The ensemble mean displays a good representation of the seasonal spatial variability of frequency of occurrence of coastal jets. The Oman and Benguela CLLJs show, respectively, a decrease and increase of frequency of occurrence in the studied period, which are statistically significant during boreal summer and austral spring. The coastal jets have higher mean frequencies of occurrences during late afternoon and early evening. During the season where each CLLJ has higher mean frequency of occurrence, the Oman CLLJ is the most intense and occurs at higher altitudes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0395.s1.

Corresponding author: Daniela C.A. Lima, dclima@fc.ul.pt

Supplementary Materials

    • Supplemental Materials (DOCX 2.54 MB)
Save