Interannual Variability of Summer Tropical Cyclone Rainfall in the Western North Pacific Depicted by CFSR and Associated Large-Scale Processes and ISO Modulations

Jau-Ming Chen Department of Maritime Information and Technology, National Kaohsiung Marine University, Kaohsiung, Taiwan

Search for other papers by Jau-Ming Chen in
Current site
Google Scholar
PubMed
Close
,
Pei-Hua Tan Department of Applied History, National Chiayi University, Chiayi, Taiwan

Search for other papers by Pei-Hua Tan in
Current site
Google Scholar
PubMed
Close
,
Liang Wu Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Liang Wu in
Current site
Google Scholar
PubMed
Close
,
Hui-Shan Chen Department of Maritime Information and Technology, National Kaohsiung Marine University, Kaohsiung, Taiwan

Search for other papers by Hui-Shan Chen in
Current site
Google Scholar
PubMed
Close
,
Jin-Shuen Liu Department of Maritime Information and Technology, National Kaohsiung Marine University, Kaohsiung, Taiwan

Search for other papers by Jin-Shuen Liu in
Current site
Google Scholar
PubMed
Close
, and
Ching-Feng Shih Marine Meteorology Center, Central Weather Bureau, Taipei, Taiwan

Search for other papers by Ching-Feng Shih in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the interannual variability of summer tropical cyclone (TC) rainfall (TCR) in the western North Pacific (WNP) depicted by the Climate Forecast System Reanalysis (CFSR). This interannual variability exhibits a maximum region near Taiwan (19°–28°N, 120°–128°E). Significantly increased TCR in this region is modulated by El Niño–Southern Oscillation (ENSO)-related large-scale processes. They feature elongated sea surface temperature warming in the tropical eastern Pacific and a southeastward-intensified monsoon trough. Increased TC movements are facilitated by interannual southerly/southeasterly flows in the northeastern periphery of the intensified monsoon trough to move from the tropical WNP toward the region near Taiwan, resulting in increased TCR. The coherent dynamic relations between interannual variability of summer TCR and large-scale environmental processes justify CFSR as being able to reasonably depict interannual characteristics of summer TCR in the WNP. For intraseasonal oscillation (ISO) modulations, TCs tend to cluster around the center of a 10–24-day cyclonic anomaly and follow its northwestward propagation from the tropical WNP toward the region near Taiwan. The above TC movements are subject to favorable background conditions provided by a northwest–southeasterly extending 30–60-day cyclonic anomaly. Summer TCR tends to increase (decrease) during El Niño (La Niña) years and strong (weak) ISO years. By comparing composite TCR anomalies and correlations with TCR variability, it is found that ENSO is more influential than ISO in modulating the interannual variability of summer TCR in the WNP.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jau-Ming Chen, cjming@mail.nkmu.edu.tw

Abstract

This study examines the interannual variability of summer tropical cyclone (TC) rainfall (TCR) in the western North Pacific (WNP) depicted by the Climate Forecast System Reanalysis (CFSR). This interannual variability exhibits a maximum region near Taiwan (19°–28°N, 120°–128°E). Significantly increased TCR in this region is modulated by El Niño–Southern Oscillation (ENSO)-related large-scale processes. They feature elongated sea surface temperature warming in the tropical eastern Pacific and a southeastward-intensified monsoon trough. Increased TC movements are facilitated by interannual southerly/southeasterly flows in the northeastern periphery of the intensified monsoon trough to move from the tropical WNP toward the region near Taiwan, resulting in increased TCR. The coherent dynamic relations between interannual variability of summer TCR and large-scale environmental processes justify CFSR as being able to reasonably depict interannual characteristics of summer TCR in the WNP. For intraseasonal oscillation (ISO) modulations, TCs tend to cluster around the center of a 10–24-day cyclonic anomaly and follow its northwestward propagation from the tropical WNP toward the region near Taiwan. The above TC movements are subject to favorable background conditions provided by a northwest–southeasterly extending 30–60-day cyclonic anomaly. Summer TCR tends to increase (decrease) during El Niño (La Niña) years and strong (weak) ISO years. By comparing composite TCR anomalies and correlations with TCR variability, it is found that ENSO is more influential than ISO in modulating the interannual variability of summer TCR in the WNP.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jau-Ming Chen, cjming@mail.nkmu.edu.tw
Save
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, https://doi.org/10.1175/JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., T. Iwasaki, H. Qin, and W. Sha, 2014: Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Climate, 27, 55175537, https://doi.org/10.1175/JCLI-D-14-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., and H.-S. Chen, 2011: Interdecadal variability of summer rainfall in Taiwan associated with tropical cyclones and monsoon. J. Climate, 24, 57865798, https://doi.org/10.1175/2011JCLI4043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., and C.-F. Shih, 2012: Association between northward-moving tropical cyclones and southwesterly flows modulated by intraseasonal oscillation. J. Climate, 25, 50725087, https://doi.org/10.1175/JCLI-D-11-00264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., F.-C. Lu, S.-L. Kuo, and C.-F. Shih, 2005: Summer climate variability in Taiwan and associated large-scale processes. J. Meteor. Soc. Japan, 83, 499516, https://doi.org/10.2151/jmsj.83.499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., T. Li, and C.-F. Shih, 2010: Tropical cyclone– and monsoon-induced rainfall variability in Taiwan. J. Climate, 23, 41074120, https://doi.org/10.1175/2010JCLI3355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., H.-S. Chen, and J.-S. Liu, 2013a: Coherent interdecadal variability of tropical cyclone rainfall and seasonal rainfall in Taiwan during October. J. Climate, 26, 308321, https://doi.org/10.1175/JCLI-D-11-00697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., P.-H. Tan, and C.-F. Shih, 2013b: Heavy rainfall induced by tropical cyclones across northern Taiwan and associated intraseasonal oscillation modulation. J. Climate, 26, 79928007, https://doi.org/10.1175/JCLI-D-12-00692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and J.-M. Chen, 1993: The 10–20-day mode of the 1979 Indian monsoon: Its relationship with the time variation of monsoon rainfall. Mon. Wea. Rev., 121, 24652482, https://doi.org/10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and J.-M. Chen, 1995: An observational study of the South China Sea monsoon during the 1979 summer: Onset and life cycle. Mon. Wea. Rev., 123, 22952318, https://doi.org/10.1175/1520-0493(1995)123<2295:AOSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-P. Weng, N. Yamazaki, and S. Kiehne, 1998: Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Rev., 126, 10801090, https://doi.org/10.1175/1520-0493(1998)126<1080:IVITTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, M.-C. Yen, and A. J. Clark, 2009: Impact of the intraseasonal variability of the western North Pacific large-scale circulation on tropical cyclone tracks. Wea. Forecasting, 24, 646666, https://doi.org/10.1175/2008WAF2222186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944, https://doi.org/10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., C.-C. Wu, and E.-J. Cha, 2010: Change of tropical cyclone activity by Pacific–Japan teleconnection pattern in the western North Pacific. J. Geophys. Res., 115, D19114, https://doi.org/10.1029/2010JD013866.

    • Search Google Scholar
    • Export Citation
  • Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best tracks, 1945–2000. U. S. Naval Research Laboratory Tech. Rep. NRL/MR/7540-02-16, 22 pp., http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/TC_bt_report.html.

  • Chu, P.-S., X. Zhao, C.-H. Ho, H.-S. Kim, M.-M. Lu, and J.-H. Kim, 2010: Bayesian forecasting of seasonal typhoon activity: A track-pattern-oriented categorization approach. J. Climate, 23, 66546668, https://doi.org/10.1175/2010JCLI3710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., B. J. Soden, and B. P. Kirtman, 2015: The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks. J. Climate, 28, 18061823, https://doi.org/10.1175/JCLI-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 2007: The variability of the Asian summer monsoon. J. Meteor. Soc. Japan, 85B, 2154, https://doi.org/10.2151/jmsj.85B.21.

  • Feng, X., R. Wu, J. Chen, and Z. Wen, 2013: Factors for interannual variations of September–October rainfall in Hainan, China. J. Climate, 26, 89628978, https://doi.org/10.1175/JCLI-D-12-00728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 14481468, https://doi.org/10.1175/1520-0493(1991)119<1448:TCTCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1995a: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123, 12251246, https://doi.org/10.1175/1520-0493(1995)123<1225:LSCVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1995b: Large-scale circulation variability over the tropical western North Pacific. Part II: Persistence and transition characteristics. Mon. Wea. Rev., 123, 12471268, https://doi.org/10.1175/1520-0493(1995)123<1247:LSCVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and C.-H. Weng, 2001: Northwestward propagation of the intraseasonal oscillation in the western North Pacific during the boreal summer: Structure and mechanism. J. Climate, 14, 38343850, https://doi.org/10.1175/1520-0442(2001)014<3834:NPOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., C. Chou, and R. Huang, 2011: Seasonal modulation of tropical intraseasonal oscillations on tropical cyclone geneses in the western North Pacific. J. Climate, 24, 63396352, https://doi.org/10.1175/2011JCLI4200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543, https://doi.org/10.1175/2009JCLI3303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2010: Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J. Meteor. Soc. Japan, 88, 475496, https://doi.org/10.2151/jmsj.2010-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and M. J. Alexander, 2013: Tropical precipitation variability and convectively coupled equatorial waves on submonthly time scales in reanalysis and TRMM. J. Climate, 26, 30133030, https://doi.org/10.1175/JCLI-D-12-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., M.-I. Lee, P. J. Webster, D. Kim, and J. H. Yoo, 2013: A physical basis for the probabilistic prediction of the accumulated tropical cyclone kinetic energy in the western North Pacific. J. Climate, 26, 79817991, https://doi.org/10.1175/JCLI-D-12-00679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ko, K.-C., and H.-H. Hsu, 2006: Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July–August season. J. Meteor. Soc. Japan, 84, 871889, https://doi.org/10.2151/jmsj.84.871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ko, K.-C., and H.-H. Hsu, 2009: ISO modulation on the submonthly wave pattern and recurving tropical cyclones in the tropical western North Pacific. J. Climate, 22, 582599, https://doi.org/10.1175/2008JCLI2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, H., and B. Wang, 2009: How much do tropical cyclones affect seasonal and interannual rainfall variability over the western North Pacific? J. Climate, 22, 54955510, https://doi.org/10.1175/2009JCLI2646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636651, https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2000: Impacts of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309, https://doi.org/10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D. E., and M. Biasutti, 2014: Climatology and variability of precipitation in the Twentieth-Century Reanalysis. J. Climate, 27, 59645981, https://doi.org/10.1175/JCLI-D-13-00630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013a: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 29042918, https://doi.org/10.1175/JCLI-D-12-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013b: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 29192930, https://doi.org/10.1175/JCLI-D-12-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2015: Interdecadal changes in summertime tropical cyclone precipitation over southeast China during 1960–2009. J. Climate, 28, 14941509, https://doi.org/10.1175/JCLI-D-14-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., W. Zhou, and T. C. Lee, 2015: Climatological characteristics and observed trends of tropical cyclone–induced rainfall and their influences on the long-term rainfall variations in Hong Kong. Mon. Wea. Rev., 143, 21922206, https://doi.org/10.1175/MWR-D-14-00332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, Z., Y. Wang, and G. Wang, 2016: Impact of intraseasonal oscillation on the activity of tropical cyclones in summer over the South China Sea. Part I: Local tropical cyclones. J. Climate, 29, 855868, https://doi.org/10.1175/JCLI-D-15-0617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., T. Marchok, H.-L. Pan, M. Bender, and S. Lord, 2000: Improvements in hurricane initialization and forecasting at NCEP with global and regional (GFDL) models. NOAA Tech. Proc. Bull. 472, 7 pp., http://www.nws.noaa.gov/om/tpb/472.pdf.

  • Lonfat, M., F. D. Marks Jr., and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective. Mon. Wea. Rev., 132, 16451660, https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., and J. C. L. Chan, 2005: Intraseasonal variability of the South China Sea summer monsoon. J. Climate, 18, 23882402, https://doi.org/10.1175/JCLI3395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. J., 1995: Tropical cyclone formation. Global perspectives on tropical cyclones, R. L. Elsberry, Ed., WMO/TD-693, TCP-38, 63–105.

  • Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE area. Mon. Wea. Rev., 107, 9941013, https://doi.org/10.1175/1520-0493(1979)107<0994:LSAODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, T., L.-X. Chen, A. Xie, and M. L. Shrestha, 1986: Eastward propagation of 30–60 day perturbations as revealed from outgoing longwave radiation data. J. Atmos. Sci., 43, 961971, https://doi.org/10.1175/1520-0469(1986)043<0961:EPODPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., and K. Rajendran, 2007: Relationship between tropospheric circulation over the western North Pacific and tropical cyclone approach/landfall on Japan. J. Meteor. Soc. Japan, 85, 101114, https://doi.org/10.2151/jmsj.85.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. International Geophysics Series, Vol. 46, Academic Press, 293 pp.

  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., R. F. Adler, and H. F. Pierce, 2000: Contribution of tropical cyclones to the North Pacific climatological rainfall as observed from satellites. J. Appl. Meteor., 39, 16581678, https://doi.org/10.1175/1520-0450(2000)039<1658:COTCTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., and R. E. Hart, 2012: An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J. Climate, 25, 34533475, https://doi.org/10.1175/2011JCLI4208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, V. B. S., V. E. Kousky, and R. W. Higgins, 2011: Daily precipitation statistics for South America: An intercomparison between NCEP reanalysis and observations. J. Hydrometeor., 12, 101117, https://doi.org/10.1175/2010JHM1303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skok, G., J. Bacmeister, and J. Tribbia, 2013: Analysis of tropical cyclone precipitation using an object-based algorithm. J. Climate, 26, 25632579, https://doi.org/10.1175/JCLI-D-12-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16, 14951510, https://doi.org.10.1175/1520-0442-16.10.1495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, https://doi.org/10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Li, M. Mu, and W. Duan, 2013: Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Climate Dyn., 40, 28872902, https://doi.org/10.1007/s00382-012-1434-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Wen, R. Huang, and R. Wu, 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev., 140, 140150, https://doi.org/10.1175/MWR-D-11-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., S. Wu, and P. Zhai, 2007 :The impact of tropical cyclones on Hainan Island’s extreme and total precipitation. Int. J. Climatol., 27, 10591064, https://doi.org/10.1002/joc.1464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242, https://doi.org/10.2151/jmsj1965.57.3_227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., L. Wu, and W. Zhou, 2011: Interannual changes of tropical cyclone intensity in the western North Pacific. J. Meteor. Soc. Japan, 89, 243253, https://doi.org/10.2151/jmsj.2011-305.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 381 77 9
PDF Downloads 247 55 3