Frequency-Domain Analysis of Atmospherically Forced versus Intrinsic Ocean Surface Kinetic Energy Variability in GFDL’s CM2-O Model Hierarchy

Amanda K. O’Rourke Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Amanda K. O’Rourke in
Current site
Google Scholar
PubMed
Close
,
Brian K. Arbic Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Brian K. Arbic in
Current site
Google Scholar
PubMed
Close
, and
Stephen M. Griffies NOAA Geophysical Fluid Dynamics Laboratory, and Princeton University, Princeton, New Jersey

Search for other papers by Stephen M. Griffies in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Low-frequency variability at the ocean surface can be excited both by atmospheric forcing, such as in exchanges of heat and momentum, and by the intrinsic nonlinear transfer of energy between mesoscale ocean eddies. Recent studies have shown that nonlinear eddy interactions can excite an energy transfer from high to low frequencies analogous to the transfer of energy from high to low wavenumbers (small to large spatial scales) in quasi-two-dimensional turbulence. As the spatial inverse cascade is driven by oceanic eddies, the process of energy exchange across frequencies may be sensitive to ocean model resolution. Here a cross-spectrum diagnostic is applied to the oceanic component in a hierarchy of fully coupled ocean–atmosphere models to address the transfer of ocean surface kinetic energy between high and low frequencies. The cross-spectral diagnostic allows for a comparison of the relative contributions of coupled atmospheric forcing through wind stress and the intrinsic advection to low-frequency ocean surface kinetic energy. Diagnostics of energy flux and transfer within the frequency domain are compared between three coupled models with ocean model horizontal resolutions of 1°, 1/4°, and 1/10° to address the importance of resolving eddies in the driving of energy to low frequencies in coupled models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amanda K. O’Rourke, orourkea@umich.edu

Abstract

Low-frequency variability at the ocean surface can be excited both by atmospheric forcing, such as in exchanges of heat and momentum, and by the intrinsic nonlinear transfer of energy between mesoscale ocean eddies. Recent studies have shown that nonlinear eddy interactions can excite an energy transfer from high to low frequencies analogous to the transfer of energy from high to low wavenumbers (small to large spatial scales) in quasi-two-dimensional turbulence. As the spatial inverse cascade is driven by oceanic eddies, the process of energy exchange across frequencies may be sensitive to ocean model resolution. Here a cross-spectrum diagnostic is applied to the oceanic component in a hierarchy of fully coupled ocean–atmosphere models to address the transfer of ocean surface kinetic energy between high and low frequencies. The cross-spectral diagnostic allows for a comparison of the relative contributions of coupled atmospheric forcing through wind stress and the intrinsic advection to low-frequency ocean surface kinetic energy. Diagnostics of energy flux and transfer within the frequency domain are compared between three coupled models with ocean model horizontal resolutions of 1°, 1/4°, and 1/10° to address the importance of resolving eddies in the driving of energy to low frequencies in coupled models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amanda K. O’Rourke, orourkea@umich.edu
Save
  • Arbic, B. K., R. B. Scott, G. R. Flierl, A. J. Morten, J. G. Richman, and J. F. Shriver, 2012: Nonlinear cascades of surface oceanic geostrophic kinetic energy in the frequency domain. J. Phys. Oceanogr., 42, 15771600, doi:10.1175/JPO-D-11-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., M. Müller, J. G. Richman, J. F. Shriver, A. J. Morten, R. B. Scott, G. Sérazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, doi:10.1175/JPO-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. D., D. W. Pierce, R. Saravanan, N. Schneider, D. Dommenget, and M. Latif, 1999: Origins of the midlatitude Pacific decadal variablity. Geophys. Res. Lett., 26, 14531456, doi:10.1029/1999GL900278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duhaut, T. H. A., and D. N. Straub, 2006: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation. J. Phys. Oceanogr., 36, 202211, doi:10.1175/JPO2842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDLs ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and the baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W., and R. Thomson, 2014: Data Analysis Methods in Physical Oceanography. 3rd ed. Elsevier, 728 pp.

  • Farneti, R., T. L. Delworth, A. Rosati, S. Griffies, and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557, doi:10.1175/2010JPO4353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean general circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grégorio, S., T. Penduff, G. Sérazin, J.-M. Molines, B. Barnier, and J. Hirschi, 2015: Intrinsic variability of the Atlantic meridional overturning circulation at interannual-to-multidecadal timescales. J. Phys. Oceanogr., 45, 19291946, doi:10.1175/JPO-D-14-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and R. Tailleux, 2011: Kinetic energy analysis of the response of the Atlantic meridional overturning circulation to CO2-forced climate change. Climate Dyn., 37, 893914, doi:10.1007/s00382-010-0847-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, doi:10.1175/JCLI-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1980: Estimation of nonlinear energy transfer spectra by the cross-spectral method. J. Atmos. Sci., 37, 299307, doi:10.1175/1520-0469(1980)037<0299:EONETS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirose, N., I. Fukumori, V. Zlotnicki, and R. M. Ponte, 2001: Modeling of the high-frequency barotropic response of the ocean to atmospheric disturbances: Sensitivity to forcing, topography, and friction. J. Geophys. Res., 106, 30 98730 995, doi:10.1029/2000JC000763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. McC., W. K. Dewar, P. D. Killworth, and J. R. Blundell, 2003: A quasi-geostrophic coupled model (Q-GCM). Mon. Wea. Rev., 131, 22612278, doi:10.1175/1520-0493(2003)131<2261:AQCMQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, doi:10.1175/JCLI3570.1.

  • Hua, B. L., and D. B. Haidvogel, 1986: Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci., 43, 29232936, doi:10.1175/1520-0469(1986)043<2923:NSOTVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and I. M. Held, 2014: Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Modell., 80, 3648, doi:10.1016/j.ocemod.2014.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and R. Tokmakian, 1997: Forcing and sampling of ocean general circulation models: Impact of high-frequency motions. J. Phys. Oceanogr., 27, 11731179, doi:10.1175/1520-0485(1997)027,1173:FASOOG.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 13031328, doi:10.1007/s00382-012-1500-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 1996: Baroclinic vorticies over a sloping bottom. Ph.D. thesis, Massachusetts Institute of Technology–Woods Hole Oceanographic Institution Joint Program in Physical Oceanography, 220 pp.

    • Crossref
    • Export Citation
  • Larichev, V. D., and I. M. Held, 1995: Eddy amplitudes and fluxes in a homogenous model of fully developed baroclinic instability. J. Phys. Oceanogr., 25, 22852297, doi:10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., and J. L. McClean, 2005: An eddy resolving global 1/10° ocean simulation. Ocean Modell., 8, 3154, doi:10.1016/j.ocemod.2003.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morten, A. J., 2015: Spatio-temporal spectra and spectral transfers in fluid dynamics. Ph.D. thesis, University of Michigan, 146 pp., doi:2027.42/116695.

  • Penduff, T., M. Juza, L. Brodeau, G. C. Smith, B. Barnier, J.-M. Molines, A.-M. Treguier, and G. Madec, 2010: Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci., 6, 269284, doi:10.5194/os-6-269-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penduff, T., M. Juza, B. Barnier, J. Zika, W. K. Dewar, A.-M. Treguier, J.-M. Molines, and N. Audiffren, 2011: Sea level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 56525670, doi:10.1175/JCLI-D-11-00077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103, doi:10.1175/JPO2807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1979: Geostrophic turbulence. Annu. Rev. Fluid Mech., 11, 401441, doi:10.1146/annurev.fl.11.010179.002153.

  • Roberts, M. J., and Coauthors, 2004: Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J. Climate, 17, 320, doi:10.1175/1520-0442(2004)017<0003:IOAEOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., H. T. Hewitt, P. Hyder, D. Ferreira, S. A. Josey, M. Mizielinski, and A. Shelly, 2016: Impact of ocean resolution on coupled air-sea fluxes and large-scale climate. Geophys. Res. Lett., 43, 10 43010 438, doi:10.1002/2016GL070559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1978: Two-layer quasi-geostrophic turbulence in a simple special case. Geophys. Astrophys. Fluid Dyn., 10, 2552, doi:10.1080/03091927808242628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167211, doi:10.1080/03091928008241178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saltzman, B., 1957: Equations governing the energetics of the larger scales of atmospheric turbulence in the domain of wave number. J. Meteor., 14, 513523, doi:10.1175/1520-0469(1957)014<0513:EGTEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, doi:10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2014: A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst., 6, 10651094, doi:10.1002/2014MS000363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinberg, H. L., A. Winn-Nielsen, and C.-H. Yang, 1971: On nonlinear cascades in large-scale atmospheric flow. J. Geophys. Res., 76, 86298640, doi:10.1029/JC076i036p08629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 2009: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc., 164, 476490, doi:10.1098/rspa.1938.0032.

  • Thorpe, S. A., 2007: An Introduction to Ocean Turbulence. Cambridge University Press, 266 pp.

    • Crossref
    • Export Citation
  • Vallis, G., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press, 770 pp.

    • Crossref
    • Export Citation
  • von Storch, J.-S., H. Sasaki, and J. Marotzke, 2007: Wind-generated power input to the deep ocean: An estimate using a 1/10°general circulation model. J. Phys. Oceanogr., 37, 657672, doi:10.1175/JPO3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., H. Haak, E. Hertwig, and I. Fast, 2016: Vertical heat and salt fluxes due to resolved and parameterised meso-scale eddies. Ocean Modell., 108, 119, doi:10.1016/j.ocemod.2016.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and C. Koblinsky, 1995: Low-frequency variability in the regions of the Kuroshio Extension and the Gulf Stream. J. Geophys. Res., 100, 18 31318 331, doi:10.1029/95JC01832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, doi:10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, C., X. Zhai, and X.-D. Shang, 2016: Work done by atmospheric winds on mesoscale ocean eddies. Geophys. Res. Lett., 43, 12 17412 180, doi:10.1002/2016GL071275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, D. P. Marshall, and C. Wunsch, 2012: On the wind power input to the ocean general circulation. J. Phys. Oceanogr., 42, 13571365, doi:10.1175/JPO-D-12-09.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 609 124 11
PDF Downloads 383 51 2