A New Method for Temperature Spatial Interpolation Based on Sparse Historical Stations

Chengdong Xu State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Chengdong Xu in
Current site
Google Scholar
PubMed
Close
,
Jinfeng Wang State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jinfeng Wang in
Current site
Google Scholar
PubMed
Close
, and
Qingxiang Li School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

Search for other papers by Qingxiang Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Long-term grid historical temperature datasets are the foundation of climate change research. Datasets developed by traditional interpolation methods usually contain data for a period of less than 50 yr, with a relatively low spatial resolution owing to the sparse distribution of stations in the historical period. In this study, the point interpolation based on Biased Sentinel Hospitals Areal Disease Estimation (P-BSHADE) method has been used to interpolate 1-km grids of monthly surface air temperatures in the historical period of 1900–50 in China. The method can be used to remedy the station bias resulting from sparse coverage, and it considers the characteristics of spatial autocorrelation and nonhomogeneity of the temperature distribution to obtain unbiased and minimum error variance estimates. The results have been compared with those from widely used methods such as kriging, inverse distance weighting (IDW), and a combined spline with kriging (TPS-KRG) method, both theoretically and empirically. The leave-one-out cross-validation method using a real dataset was implemented. The root-mean-square error (RMSE) [mean absolute error (MAE)] for P-BSHADE is 0.98°C (0.75°C), while those for TPS-KRG, kriging, and IDW are 1.46° (1.07°), 2.23° (1.51°), and 2.64°C (1.85°C), respectively. The results of validation using a simulated dataset also present the smallest error for P-BSHADE, demonstrating its empirical superiority. In addition to its empirical superiority, the method also can produce a map of the estimated error variance, representing the uncertainty of estimation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0150.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jinfeng Wang, wangjf@lreis.ac.cn

Abstract

Long-term grid historical temperature datasets are the foundation of climate change research. Datasets developed by traditional interpolation methods usually contain data for a period of less than 50 yr, with a relatively low spatial resolution owing to the sparse distribution of stations in the historical period. In this study, the point interpolation based on Biased Sentinel Hospitals Areal Disease Estimation (P-BSHADE) method has been used to interpolate 1-km grids of monthly surface air temperatures in the historical period of 1900–50 in China. The method can be used to remedy the station bias resulting from sparse coverage, and it considers the characteristics of spatial autocorrelation and nonhomogeneity of the temperature distribution to obtain unbiased and minimum error variance estimates. The results have been compared with those from widely used methods such as kriging, inverse distance weighting (IDW), and a combined spline with kriging (TPS-KRG) method, both theoretically and empirically. The leave-one-out cross-validation method using a real dataset was implemented. The root-mean-square error (RMSE) [mean absolute error (MAE)] for P-BSHADE is 0.98°C (0.75°C), while those for TPS-KRG, kriging, and IDW are 1.46° (1.07°), 2.23° (1.51°), and 2.64°C (1.85°C), respectively. The results of validation using a simulated dataset also present the smallest error for P-BSHADE, demonstrating its empirical superiority. In addition to its empirical superiority, the method also can produce a map of the estimated error variance, representing the uncertainty of estimation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0150.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jinfeng Wang, wangjf@lreis.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 8.26 MB)
Save
  • Boer, E. P. J., K. M. de Beurs, and A. D. Hartkamp, 2001: Kriging and thin plate splines for mapping climate variables. Int. J. Appl. Earth Obs. Geoinf., 3, 146154, https://doi.org/10.1016/S0303-2434(01)85006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, R., I. Auer, M. Brunetti, M. Maugeri, T. Nanni, and W. Schöner, 2001: Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int. J. Climatol., 21, 17791801, https://doi.org/10.1002/joc.689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Burrough, P. A., and R. A. McDonnell, 1998: Principles of Geographical Information Systems. Oxford University Press, 333 pp.

  • Cao, L. J., P. Zhao, Z. W. Yan, P. Jones, Y. N. Zhu, Y. Yu, and G. L. Tang, 2013: Instrumental temperature series in eastern and central China back to the nineteenth century. J. Geophys. Res. Atmos., 118, 81978207, https://doi.org/10.1002/jgrd.50615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, L. J., Y. N. Zhu, G. L. Tang, F. Yuan, and Z. W. Yan, 2016: Climatic warming in China according to a homogenized data set from 2419 stations. Int. J. Climatol., 36, 43844392, https://doi.org/10.1002/joc.4639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, L. J., Z. W. Yan, P. Zhao, Y. N. Zhu, Y. Yu, G. L. Tang, and P. Jones, 2017: Climatic warming in China during 1901–2015 based on an extended dataset of instrumental temperature records. Environ. Res. Lett., 12, 064005, https://doi.org/10.1088/1748-9326/aa68e8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christakos, G., 1992: Random Field Models in Earth Sciences. Academic Press, 474 pp.

  • Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol., 26, 707721, https://doi.org/10.1002/joc.1322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris, 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22, 99113, https://doi.org/10.3354/cr022099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., E. H. Helmer, and M. Quiñones, 2003: Mapping the climate of Puerto Rico, Vieques and Culebra. Int. J. Climatol., 23, 13591381, https://doi.org/10.1002/joc.937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., and B. N. Belcher, 2007: Spatial interpolation of daily maximum and minimum air temperature based on meteorological model analyses and independent observations. J. Appl. Meteor. Climatol., 46, 19811992, https://doi.org/10.1175/2007JAMC1536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Luzio, M., G. L. Johnson, C. Daly, J. K. Eischeid, and J. G. Arnold, 2008: Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J. Appl. Meteor. Climatol., 47, 475497, https://doi.org/10.1175/2007JAMC1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Piazza, A., F. Lo Conti, L. V. Noto, F. Viola, and G. La Loggia, 2011: Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs. Geoinf., 13, 396408, https://doi.org/10.1016/j.jag.2011.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eischeid, J. K., P. A. Pasteris, H. F. Diaz, M. S. Plantico, and N. J. Lott, 2000: Creating a serially complete, national daily time series of temperature and precipitation for the western United States. J. Appl. Meteor., 39, 15801591, https://doi.org/10.1175/1520-0450(2000)039<1580:CASCND>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res., 113, D01103, https://doi.org/10.1029/2007JD008470.

    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 1997: Geostatistics for Natural Resources Evaluation. Oxford University Press, 483 pp.

  • Guan, H., X. P. Zhang, O. Makhnin, and Z. A. Sun, 2013: Mapping mean monthly temperatures over a coastal hilly area incorporating terrain aspect effects. J. Hydrometeor., 14, 233250, https://doi.org/10.1175/JHM-D-12-014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haining, R., 2003: Spatial Data Analysis: Theory and Practice. Cambridge University Press, 432 pp.

    • Crossref
    • Export Citation
  • Hansen, J., and S. Lebedeff, 1987: Global trends of measured surface air temperature. J. Geophys. Res., 92, 13 34513 372, https://doi.org/10.1029/JD092iD11p13345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, https://doi.org/10.1002/joc.1276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofstra, N., M. Haylock, M. New, P. Jones, and C. Frei, 2008: Comparison of six methods for the interpolation of daily, European climate data. J. Geophys. Res., 113, D21110, https://doi.org/10.1029/2008JD010100.

    • Search Google Scholar
    • Export Citation
  • Hudson, G., and H. Wackernagel, 1994: Mapping temperature using kriging with external drift: Theory and an example from Scotland. Int. J. Climatol., 14, 7791, https://doi.org/10.1002/joc.3370140107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaaks, E. H., and R. M. Srivastava, 1989: Applied Geostatistics. Oxford University Press, 561 pp.

  • Jeffrey, S. J., J. O. Carter, K. B. Moodie, and A. R. Beswick, 2001: Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Software, 16, 309330, https://doi.org/10.1016/S1364-8152(01)00008-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., 1994: Hemispheric surface air temperature variations: A reanalysis and an update to 1993. J. Climate, 7, 17941802, https://doi.org/10.1175/1520-0442(1994)007<1794:HSATVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., 2016: The reliability of global and hemispheric surface temperature records. Adv. Atmos. Sci., 33, 269282, https://doi.org/10.1007/s00376-015-5194-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and D. H. Lister, 2009: The urban heat island in central London and urban-related warming trends in central London since 1900. Weather, 64, 323327, https://doi.org/10.1002/wea.432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and T. M. L. Wigley, 2010: Estimation of global temperature trends: What’s important and what isn’t. Climatic Change, 100, 5969, https://doi.org/10.1007/s10584-010-9836-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., M. New, D. E. Parker, S. Martin, and I. G. Rigor, 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37, 173199, https://doi.org/10.1029/1999RG900002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, https://doi.org/10.1029/2011JD017139.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and P. D. Jones, 1989: Urban bias in area-averaged surface air temperature trends. Bull. Amer. Meteor. Soc., 70, 265270, https://doi.org/10.1175/1520-0477(1989)070<0265:UBIAAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilibarda, M., T. Hengl, G. B. M. Heuvelink, B. Gräler, E. Pebesma, M. Perčec Tadić, and B. Bajat, 2014: Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res. Atmos., 119, 22942313, https://doi.org/10.1002/2013JD020803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrimore, J. H., M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, R. S. Vose, and J. Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res. Atmos., 116, D19121, https://doi.org/10.1029/2011JD016187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., W. Dong, W. Li, X. Gao, P. Jones, J. Kennedy, and D. Parker, 2010: Assessment of the uncertainties in temperature change in China during the last century. Chin. Sci. Bull., 55, 19741982, https://doi.org/10.1007/s11434-010-3209-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., L. Zhang, W. Xu, T. Zhou, J. Wang, P. Zhai, and P. Jones, 2017: Comparisons of time series of annual mean surface air temperature for China since the 1900s. Bull. Amer. Meteor. Soc., 98, 699711, https://doi.org/10.1175/BAMS-D-16-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, https://doi.org/10.1002/joc.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalder, I. A., and R. W. Wein, 1998: Spatial interpolation of climatic normals: Test of a new method in the Canadian boreal forest. Agric. For. Meteor., 92, 211225, https://doi.org/10.1016/S0168-1923(98)00102-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, 829856, https://doi.org/10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olea, R. A., 1999: Geostatistics for Engineers and Earth Scientists. Springer, 303 pp.

    • Crossref
    • Export Citation
  • Piper, S. C., and E. F. Stewart, 1996: A gridded global data set of daily temperature and precipitation for terrestrial biospheric modeling. Global Biogeochem. Cycles, 10, 757782, https://doi.org/10.1029/96GB01894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahl, K., R. D. Moore, J. A. Floyer, M. G. Asplin, and I. G. McKendry, 2006: Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric. For. Meteor., 139, 224236, https://doi.org/10.1016/j.agrformet.2006.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J.-F., and Coauthors, 2011: Area disease estimation based on sentinel hospital records. PLoS One, 6, e23428, https://doi.org/10.1371/journal.pone.0023428.

    • Search Google Scholar
    • Export Citation
  • Wang, J.-F., A. Stein, B.-B. Gao, and Y. Ge, 2012: A review of spatial sampling. Spat. Stat., 2, 114, https://doi.org/10.1016/j.spasta.2012.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J.-F., C.-D. Xu, M.-G. Hu, Q.-X. Li, Z.-W. Yan, P. Zhao, and P. Jones, 2014: A new estimate of the China temperature anomaly series and uncertainty assessment in 1900–2006. J. Geophys. Res. Atmos., 119, 19, https://doi.org/10.1002/2013JD020542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, C.-D., J.-F. Wang, M.-G. Hu, and Q.-X. Li, 2013: Interpolation of missing temperature data at meteorological stations using P-BSHADE. J. Climate, 26, 74527463, https://doi.org/10.1175/JCLI-D-12-00633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., Q. Li, X. L. Wang, S. Yang, L. Cao, and Y. Feng, 2013: Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. J. Geophys. Res. Atmos., 118, 97089720, https://doi.org/10.1002/jgrd.50791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and Coauthors, 2017: A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Climate Dyn., https://doi.org/10.1007/s00382-017-3755-1.

    • Search Google Scholar
    • Export Citation
  • Yan, Z., and P. Jones, 2008: Detecting inhomogeneity in daily climate series using wavelet analysis. Adv. Atmos. Sci., 25, 157163, https://doi.org/10.1007/s00376-008-0157-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Z., Z. Li, Q. Li, and P. Jones, 2010: Effects of site change and urbanisation in the Beijing temperature series 1977–2006. Int. J. Climatol., 30, 12261234, https://doi.org/10.1002/joc.1971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H.-L., G. Christakos, and P. Bogaert, 2010: Dealing with spatiotemporal heterogeneity: The generalized BME model. Progress in Spatial Analysis: Methods and Applications, A. Páez et al., Eds., Springer, 75–91.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2676 633 47
PDF Downloads 2316 451 40